Hess’s Law Germain Henri Hess.

Slides:



Advertisements
Similar presentations
Entropy Section 16-2.
Advertisements

Thermochemistry Chapter 17:4 Hess’s Law and
Hesss Law Germain Henri Hess. Hesss Law In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same.
Chemical reactions involves the breaking and the making of bonds. Energy is needed to break down a bond. Energy is released when a bond is formed. If.
Hess’s Law &thermochemical equations can be combined algebraically to determine enthalpy changes for a different chemical reaction &Example 1 &C(s) +
Thermochemistry Part 3 - Enthalpy and Thermochemical Equations.
HIGHER GRADE CHEMISTRY CALCULATIONS Hess’s Law Hess’s Law states that the enthalpy change for a reaction depends only on the enthalpies of the reactants.
Chapter 6 Thermochemistry John A. Schreifels Chemistry 211.
Hess’s law calculations. 2C(s) + 3H 2 (g) + ½O 2 (g) → C 2 H 5 OH(l) C(s) + O 2 (g) → CO 2 (g) ∆H = –393 kJ mol –1 H 2 (g) + ½O 2 (g) → H 2 O(l) ∆H =
THERMOCHEMISTRY. Energy The ability to do work or transfer heat.The ability to do work or transfer heat. –Work: Energy used to cause an object that has.
THERMOCHEMISTRY.
Lecture 5: Standard Enthalpies Reading: Zumdahl 9.6 Outline: What is a standard enthalpy? Defining standard states. Using standard enthalpies to determine.
Lecture 4: Standard Enthalpies Reading: Zumdahl 9.6 Outline –What is a standard enthalpy? –Defining standard states. –Using standard enthalpies to determine.
Chapter 6 THERMOCHEMISTRY West Valley High School AP Chemistry Mr. Mata.
Energetics IB Topics 5 & 15 PART 2: Calculating  H via Bond Enthalpies & Hess’s Law Above: thermit rxn.
Chapter 6B Notes Thermochemistry West Valley High School AP Chemistry Mr. Mata.
It has been suggested that hydrogen gas obtained by the decomposition of water might be a substitute for natural gas (principally methane). To compare.
Hess’s Law Review  Q - What is the first Law of Thermodynamics?
ENTHALPY, HESS’ LAW, AND THERMOCHEMICAL EQUATIONS.
Hess’s Law SECTION 5.3. Hess’s Law  The enthalpy change of a physical or chemical process depends only on the initial and final conditions of the process.
THERMOCHEMISTRY.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
enthalpy of formation (DHf): the enthalpy change
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
Enthalpies of Formation. An enthalpy of formation,  H f, is defined as the enthalpy change for the reaction in which a compound is made from its constituent.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
It is impossible to measure enthalpy directly
A simpler problem: How much heat is given off when 1.6 g of CH 4 are burned in an excess of oxygen if  H comb = -802 kJ/mol? Step 1: Write the reaction.
Thermochem Hess’s Law and Enthalpy of Formation Sections 5.6 and 5.7.
1 Hess suggested that the sum of the enthalpies (ΔH) of the steps of a reaction will equal the enthalpy of the overall reaction. Hess’s Law.
Hess’ Law. Many reactions can occur by many alternative routes. Hess' Law states: The enthalpy change for a reaction depends only on the energy of the.
 Certain reactions cannot be measured by calorimetry ◦ Ex: slow reactions, complex reactions, hazardous chemicals…  We can substitute in other reactions.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
THERMOCHEMISTRY. Thermochemistry Chapter 6 Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
Thermochemisty (Enthalpy) and Hess’s Law Chapter 10 Sections
IIIIII Chapter 16 Hess’s Law. HESS’S LAW n If a series of reactions are added together, the enthalpy change for the net reaction will be the sum of the.
Hess’s Law “In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes.
Molar Enthalpy Recall that when we write a thermochemical equation the coefficients represent moles of particles Therefore, 1 H 2(g) + ½ O 2(g)  1 H 2.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
Ch 5: Hess ’ s Law. Hess ’ s Law states.. “ the enthalpy change for a chem rxn is the same whether the rxn takes place in one step or several steps ”
Unit VIII: Energy and Chemical Change. Introduction Energy is the essence of our very existence as individuals and as a society The food that we eat furnishes.
Hess’ Law Practice Problems 1)-79.6 kJ 2)-155 kJ 3)17.4 kJ 4)-3.70 kJ 5)-142 kJ 6) 88.1 kJ 7) kJ 8) kJ or kJ 9) -256 kJ, exo 10)
THERMOCHEMISTRY.
Hess's Law Emma Stewart Chem 12A - C.
Section 4: Calculating Enthalpy Change
How much heat is released when 4
In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one.
THERMOCHEMISTRY.
Hess’s Law & Standard Enthalpies of Formation
Hess’s Law and Standard Enthalpies of Formation
Energetics Click to start.
Hess's Law.
Unit 5: Thermochemistry
Hess’s Law Germain Henri Hess.
Hess’s Law Determine the enthalpy change of a reaction that is
Hess’s Law Determine the enthalpy change of a reaction that is
5.3 Hess’s Law How do we determine the enthalpy change of a reaction that is the sum of two or three reactions with known enthalpy changes?
Hess’s Law.
Thermochemistry Part 2 – enthalpy.
AP Chem Get Heat HW stamped off Today: Enthalpy Cont., Hess’ Law
Hess’s Law Determine the enthalpy change of a reaction that is
Hess’s Law.
Hess's Law.
Hess’s Law Germain Henri Hess.
LAW OF HESS H.W. 10/10/07 C A B B C B A C A ∆H1= +30kJ ∆H2= +60kJ
Hess’s Law and Standard Enthalpies of Formation
Hess’s Law Germain Henri Hess.
How much heat energy is required (at constant pressure) to convert 50g of ice at 100K to liquid water at 315K given the following data: Cwater =
Given this NET reaction
Presentation transcript:

Hess’s Law Germain Henri Hess

Hess’s Law “In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a series of steps.”

Hess’s Law Example Problem Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O     Reaction Ho   C + 2H2  CH4 -74.80 kJ C + O2  CO2 -393.50 kJ H2 + ½ O2  H2O -285.83 kJ CH4  C + 2H2 +74.80 kJ Step #1: CH4 must appear on the reactant side, so we reverse reaction #1 and change the sign on H.

Hess’s Law Example Problem Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O     Reaction Ho   C + 2H2  CH4 -74.80 kJ C + O2  CO2 -393.50 kJ H2 + ½ O2  H2O -285.83 kJ CH4  C + 2H2 +74.80 kJ C + O2  CO2 -393.50 kJ Step #2: Keep reaction #2 unchanged, because CO2 belongs on the product side

Hess’s Law Example Problem Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O     Reaction Ho   C + 2H2  CH4 -74.80 kJ C + O2  CO2 -393.50 kJ H2 + ½ O2  H2O -285.83 kJ CH4  C + 2H2 +74.80 kJ C + O2  CO2 -393.50 kJ 2H2 + O2  2 H2O -571.66 kJ Step #3: Multiply reaction #2 by 2

Hess’s Law Example Problem Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O     Reaction Ho   C + 2H2  CH4 -74.80 kJ C + O2  CO2 -393.50 kJ H2 + ½ O2  H2O -285.83 kJ CH4  C + 2H2 +74.80 kJ C + O2  CO2 -393.50 kJ 2H2 + O2  2 H2O -571.66 kJ CH4 + 2O2  CO2 + 2H2O -890.36 kJ Step #4: Sum up reaction and H

Calculation of Heat of Reaction Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O Hrxn =  Hf(products) -   Hf(reactants)     Substance Hf   CH4 -74.80 kJ O2 0 kJ CO2 -393.50 kJ H2O -285.83 kJ Hrxn = [-393.50kJ + 2(-285.83kJ)] – [-74.80kJ] Hrxn = -890.36 kJ