Doc.: IEEE 802.19-04/0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE 802.19 Wireless Coexistence TAG Steve Shellhammer

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

1 Chapter 3 Digital Communication Fundamentals for Cognitive Radio Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski,
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Reconsidering Reliable Transport Protocol in Heterogeneous Wireless Networks Wang Yang Tsinghua University 1.
Interference of Bluetooth and IEEE , MSWIM01 July 21, 01 1 Interference of Bluetooth and IEEE : Simulation Modeling and Performance Evaluation.
Doc.: IEEE /272a Submission June 2001 S. Choi, Philips Research Slide 1 Problems with IEEE (e) NAV Operation and ONAV Proposal Javier del.
Sg-whitespace-09/0019r0 Submission January 2009 Steve Shellhammer, QualcommSlide 1 Impact of FCC R&O on IEEE 802 Date: Authors: Notice: This.
Doc.: IEEE /0024r0 Submission July 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE Wireless Coexistence TAG Steve Shellhammer
Doc.: IEEE /567r0 Submission May 2003 Youngsoo Kim, Samsung/SNU and S. Choi, SNU Slide 1 Throughput Enhancement via Frame Aggregation – A Sequel.
Doc.: IEEE /567r1 Submission July 2003 Youngsoo Kim, Samsung/SNU and S. Choi, SNU Slide 1 Throughput Enhancement via Frame Aggregation – A Sequel.
Legacy Coexistence – A Better Way?
Doc.: IEEE /0006r0 Submission March 2005 Steve Shellhammer, Intel CorporationSlide 1 What is a CA document? Notice: This document has been prepared.
Doc.: IEEE /0028r0 Submission July 2006 Steve Shellhammer, QualcommSlide 1 Coexistence Scenario – A Pair of Unlicensed Wireless Networks Notice:
Doc.: IEEE /0001r0 Submission January 2009 Steve Shellhammer, QualcommSlide 1 Writing a Coexistence Assurance Document Notice: This document has.
An approach to the problem of optimizing channel parameters March 2001 Vlad Oleynik, Umbrella Technology Slide 1 doc.: IEEE /152 Submission.
Doc.: IEEE /139r0 Submission 16 March, 2004 Francis daCosta, MeshDynamicsSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
VoIP Models for System Performance Evaluation Farooq Khan IEEE Interim Meeting Vancouver, BC, Canada January 12-16, 2004.
Simulation and Evaluation of Various Block Assignments Evaluation of multiple carriers deployed in a channel block evaluation criteria section.
Doc.: IEEE /025r0 Submission January 2001 Steve Shellhammer, Symbol TechnologiesSlide 1 IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE /082r0 Submission January 2001 Anuj Batra et al., Texas InstrumentsSlide 1 Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE /00143r0 Submission 3/01 Nada Golmie, NISTSlide 1 IEEE P Working Group for Wireless Personal Area Networks Interference Aware.
Doc.: IEEE /0052r0 Submission January 2007 Steve Shellhammer, QualcommSlide 1 The Spectrum Sensing Function IEEE P Wireless RANs Date:
Doc.: IEEE /265r0 Submission June 2001 Robert F. Heile, Consultant Steve Shellhammer, Symbol Technologies Slide 1 IEEE P Working Group for.
Submission Page 1 January 2002 doc.: IEEE 802.RR-02/018A-d1 Andrew Myles, Cisco Systems Report of ad hoc group relating to DFS and JPT5G proposal Andrew.
Slide 1 doc.: IEEE COEX 02/019r0 Submission May 2002 Art Astrin, Apple Computer Inc. Impact of Bluetooth on b and vice-versa.
Doc.: IEEE /XXXXr0 Submission September 2006 Steve Shellhammer, QualcommSlide 1 An Evaluation of DTV Pilot Power Detection IEEE P Wireless.
Doc.: IEEE /0043r0 Submission November 2005 Steve Shellhammer, Qualcomm Inc.Slide 1 A Method of Curve Fitting to BER Data Notice: This document.
Doc.: IEEE /0134r0 Submission July 2006 Steve Shellhammer, QualcommSlide 1 Performance of the Power Detector with Noise Uncertainty IEEE P
1 Retransmission Repeat: Simple Retransmission Permutation Can Resolve Overlapping Channel Collisions Li (Erran) Li Bell Labs, Alcatel-Lucent Joint work.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Università degli Studi di Firenze 08 July 2004 COST th MCM - Budapest, Hungary 1 Cross-layer design for Multiple access techniques in wireless communications.
(Data and Signals - cont)
IEEE DRAFT RECOMMENDED PRACTICE Clause 14: Collaborative Coexistence Mechanism – IEEE and Steve Shellhammer (Symbol Technologies)
1 Capacity analysis of mesh networks with omni or directional antennas Jun Zhang and Xiaohua Jia City University of Hong Kong.
UWB Channels – Capacity and Signaling Department 1, Cluster 4 Meeting Vienna, 1 April 2005 Erdal Arıkan Bilkent University.
1 © 2004, Cisco Systems, Inc. All rights reserved. CCNA 1 v3.1 Module 2 Networking Fundamentals.
Doc.: IEEE /543r0 Submission April 2006 Richard van Nee, Airgo NetworksSlide 1 Transmitter CCA Issues in 2.4 GHz April /543r0 Richard van.
Bottom-Up Evaluation of Performance Testing Dr. Michael D. Foegelle ETS-Lindgren September 2004 Foegelle, ETS-Lindgren doc.: IEEE t.
Doc.: IEEE /1355r2 11ah Submission Date: Authors: Nov 2012 James Wang, MediaTek Slide 1.
Submission doc.: IEEE 11-14/0353r0 March 2014 Dongguk Lim, LG ElectronicsSlide 1 Suggestion on PHY Abstraction for Evaluation Methodology Date:
Doc.: IEEE / hew Submission March 2014 Raja Banerjea, CSRSlide 1 A Simplified Simultaneous Transmit and Receive Mechanism Date:
Doc.: IEEE /0025r0 Submission July 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE Wireless Coexistence TAG Steve Shellhammer
Doc.: IEEE /0071r1 Submission January 2004 Aleksandar Purkovic, Nortel NetworksSlide 1 LDPC vs. Convolutional Codes for n Applications:
Doc.: IEEE MHz-11n-impact-on-bluetooth Submission July 2008 Texas InstrumentsSlide 1 IEEE n 40 MHz Impact on BT Performance.
Interference Cancellation for Downlink MU-MIMO
Submission doc.: IEEE /1409r0 November 2013 Adriana Flores, Rice UniversitySlide 1 Dual Wi-Fi: Dual Channel Wi-Fi for Congested WLANs with Asymmetric.
Impact of LTE in Unlicensed Spectrum on Wi-Fi
Doc.: IEEE /0881r0 Submission July 2012 Anna Pantelidou, Renesas Mobile CorporationSlide 1 PS Mode Enhancements with Timing Indication Date:
Doc.: IEEE /0022r0 Submission July 2005 Steve Shellhammer, Qualcomm Inc.Slide 1 Discussion on Contention-based Protocol (CBP) Study Group Notice:
Doc.: IEEE /1234r0 Submission November 2009 Sameer Vermani, QualcommSlide 1 Interference Cancellation for Downlink MU-MIMO Date: Authors:
Addition 1’s to 20.
1 S Digital Communication Systems Advanced Modulation and Random Access Techniques.
25 seconds left…...
Multistage Spectrum Sensing for Cognitive Radios UCLA CORES.
Week 1.
Doc.: IEEE /0606r1 Submission Uplink Channel Access Date: Authors: May 2012 Minyoung Park, Intel Corp.Slide 1.
Digital Communication
Submission doc.: IEEE /1452r0 November 2014 Leif Wilhelmsson, EricssonSlide 1 Frequency selective scheduling in OFDMA Date: Authors:
Noise and SNR. Noise unwanted signals inserted between transmitter and receiver is the major limiting factor in communications system performance 2.
Doc.: IEEE /103r1 Submission 5/3/00 Nada Golmie, NISTSlide 1 IEEE P Working Group for Wireless Personal Area Networks Performance Metrics.
Doc.: IEEE /0063r0 Submission 1/01 Nada Golmie, NISTSlide 1 IEEE P Working Group for Wireless Personal Area Networks Power Control and Packet.
Doc.: IEEE / Submission March 2013 Juho Pirskanen, Renesas Mobile CorporationSlide 1 Discussion On Basic Technical Aspects for HEW Date:
Doc.: IEEE /0044r0 Submission November 2005 Steve Shellhammer, Qualcomm Inc.Slide 1 Au Update on Estimating Packet Error Rate Caused by Interference.
Doc.: IEEE /117 Submission 11/99 Nada Golmie, NISTSlide 1 IEEE P Working Group for Wireless Personal Area Networks MAC Performance Evaluation.
doc.: IEEE /xxx Matthew B. Shoemake, Ph.D.
September doc.: IEEE /0029r0 September 2005
IEEE P Working Group for Wireless Personal Area NetworksTM
Presentation transcript:

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE Wireless Coexistence TAG Steve Shellhammer An Analytic Coexistence Assurance Model

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 2 An Analytic CA Model Make reasonable approximations of PHY and MAC layers. Provide a method of predicting the impact of interference in a timely manner. Not a detailed model intended to predict absolute performance of either system. Is intended to predict relative impact of interference. Only considering non-hoppers at this point Intended as a first-order approximation.

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 3 Model of Interferer Interferer sends pulses When transmitting a pulse the interferer is models in the frequency domain as band-limited white noise of power P T fcfc f c + B/2 f c - B/2 PTPT B

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 4 Model of Interferer Based on our knowledge of the interferer traffic the temporal model of the interferer is a stochastic process of pulses. Need to consider various models. –Distribution of pulse durations –Distribution of spacing between pulses

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 5 Model of Interferer Pulse T P duration is a random variable Space T S between pulses is a random variable. TPTP TSTS TPTP TPTP TSTS

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 6 Example of Pulse Model The interferer is sending TCP IP packets. There is an AP far away sending ACK packets. So we don’t consider this an interferer. Throughput is about half the data rate. TP = 1.0 ms TS is a uniform RV –TS = U(30, 1300) us

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 7 Path Loss Model Some standard path loss model will be recommended, like the one used in Other path loss models could be used. Give a topology of devices you can determine the interference power at the receiver based on path loss model. pl(d) = path loss in dB, with d in meters.

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 8 Topology of Wireless Devices One possible topology Transmitter Receiver System A Network Under Test System B Interferer d Does not interfere due to distance from NUT Primary Interferer Is not interfered with due to distance from interferers

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 9 Receiver Model Model receiver filter as an ideal brick wall filter, as far as interference goes. The portion of the interfering signal that is within the passband of the receiver filter is pass though undisturbed Any portion of the interfering signal outside the filter passband is eliminated entirely.

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 10 Receiver Model Interferer PSD at Receiver Receiver Filter NINI 1 NINI Noise after the receiver filter is the same height as before the filter, but possibly a smaller bandwidth

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 11 Bit Error Rate It is assumed that there is formula for BER for the receiver in AWGN. ber(  ) = BER versus SNR for AWGN. There are two periods of stationarity when we want to calculate the BER (which will help us get PER) –During a portion of the received packet when there is no interference during the packet

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 12 Bit Error Rate BER when there is no interference is based on thermal noise. Since this is not very high we can –Assume it is very low –Or set up realistic topology and calculate BER Since absolute performance is not a primary concern method one is recommended.

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 13 Bit Error Rate BER when interference is present is based on equivalent AWGN. Pick AWGN level that would give equivalent power after the receiver filter.

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 14 Bit Error Rate Receiver Filter 1 NINI BFBF B AF NINI BFBF ( )

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 15 Effective AWGN Power after receiver is N I B AF To get the same power after filter we have to have, N eff B F = N I B AF The issue is that the interfere may not be as wide as filter. So we are dropping the PSD and widening the bandwidth This is another approximation

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 16 Bit Error Rate Summary We now have a method to calculate the BER when there is no interference and when there is interference. Calculate Eb from path-loss With no interference use N 0 With interference use N eff Can also add N 0 to N eff

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 17 Packet Error Rate A packet in the network under test (NUT) is sent from transmitter to the receiver. There is a (possible) overlap between that packet and an interfering pulse. TDTD T

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 18 Probability Analysis Calculate probability density function for the random variable T. (Work still to be done). T is a mixed random variable. There will be a finite probability that T is zero, and some density function over the interval (0,T D )

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 19 Probability Density of T An example of a PDF for T f T (t) ½ 0TDTD 1/(2T)

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 20 Packet Error Rate Step 1 –Calculate PER for a fixed value of T Step 2 –Average over all values of T using the previously calculated PDF for T Step 3 –If necessary, average over packet duration, T D, assuming it is variable

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 21 Other Metrics Calculate other metrics based on PER and necessary approximations (e.g. independence) –Throughput –Latency –Packet Loss Rate (assuming a fixed time to complete transmission) –Other

doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 22 Conclusions Outlined an approach to analytic solution. Next steps –Work out technique for determining PDF of collision time. –Write up document giving details. –Apply to an example and use for comparison with other techniques.