Does Reaction Time Differ With Gender in Year 9 Students?

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

1 Competition. 2 Wiederholungssendung The name of a famous Russian mathematician is … A: Smirnoff B: Gorbatschoff C: Kolmogoroff D: Stroganoff.
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Document #07-12G 1 RXQ Customer Enrollment Using a Registration Agent Process Flow Diagram (Switch) Customer Supplier Customer authorizes Enrollment.
Document #07-2I RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) (mod 7/25 & clean-up 8/20) Customer Supplier.
4-4 Variability Objective: Learn to find measures of variability.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
2010 fotografiert von Jürgen Roßberg © Fr 1 Sa 2 So 3 Mo 4 Di 5 Mi 6 Do 7 Fr 8 Sa 9 So 10 Mo 11 Di 12 Mi 13 Do 14 Fr 15 Sa 16 So 17 Mo 18 Di 19.
ZMQS ZMQS
Solve Multi-step Equations
Richmond House, Liverpool (1) 26 th January 2004.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Box and Whisker Plots.
ABC Technology Project
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
VOORBLAD.
15. Oktober Oktober Oktober 2012.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Slippery Slope
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
Januar MDMDFSSMDMDFSSS
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Essential Cell Biology
Weekly Attendance by Class w/e 6 th September 2013.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
CpSc 3220 Designing a Database
Presentation transcript:

Does Reaction Time Differ With Gender in Year 9 Students? By Kris Heuston, Josh McFarland and Jay Small

Aim / Hypothesis The aim of our testing is to determine whether or not there is any difference in reaction time between male and female Year 9 students. Our hypothesis is that reaction time is not gender related.

Our Test Our method of testing is not a survey, but a physical test to determine reaction time. The test we performed used a ruler to record reaction ‘time’ so the results are in cm. Therefore, the higher the centimetres, the slower the reaction time. We used the ‘Ruler Drop Test’ to test reaction time. This involves suspending a ruler over the person’s hand, and releasing it unexpectedly. The person must clamp their fingers on the ruler to determine their reaction time. The diagram on the left displays how we performed our test. The ruler is dropped, and where the person catches it determines their reaction time.

Our test was quite simple to do. This is how we did it: Method Our test was quite simple to do. This is how we did it: Select 20 boys and 20 girls, all in year nine. Set up an Excel Spreadsheet to record the data. Test the reaction time of each student using the ‘Ruler Drop Test’. To do this, use a 30 cm ruler. Suspend the ruler over one of the student’s hand, keeping it very still. (See photo.) Drop the ruler, unexpectedly, so that the person being tested must clamp their fingers on the ruler, but without moving their hand. Where their fingers clamp the ruler is their reaction time, or distance. (The further the ruler falls, the slower the reaction time.) Once all students have been tested three times, save the data. From there you can analyse and graph the data, and prove or disprove the hypothesis.

Results The statistics for our tests are as follows: Simplified Frequency distribution table of our tests: Some statistics: Score (cm) Male Female 7 1 8 9 10 11 12 111 13 14 15 1111 16 17 Score (cm) Male Female Boys Girls Total mean reaction time 17.15cm 18.75cm Mode reaction time 12,19 and 20cm 15 cm Median reaction time 18cm 19.5cm Range of average reaction times 20cm 21cm Fastest reaction time 7cm 9cm Slowest reaction time 27cm+ 30cm+ 19 111 1 20 11 21 22 23 24 25 26 27 28 29 30 18 11 1

Box and Whisker Plot of Results Boys’ reaction times 2nd quartile median 3rd quartile 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 CM 2nd quartile median 3rd quartile Girls’ reaction times This plot shows that the boys’ median reaction time was faster than the girls’, and that the majority of the scores were faster for the boys’ than the girls’.

Review of our Results We decided to test the reaction time of male and female Year 9 students because we found it an interesting topic and thought it wouldn’t be too complicated to test. Our method of testing was a valid method, because we controlled all the variables, and kept the test the same for every student we tested. However, the way we measured the reaction ‘time’ (using cm) was a little bit inaccurate because it wasn’t a unit of time, rather a unit of distance. To fix this problem, instead of a ruler, we could have used an electronic timing system that would involve the person hitting a button when they heard a beep, or saw a light, signalling the start of the timer.

Conclusion We found from our results that there was a difference in reaction time between male and female Year 9 students. We found that the average score of male students was a faster reaction time than girls. Looking at the frequency distribution table, the girls’ mode was lower than the boys’. (15cm compared to 12, 19, and 20cm.) However, on the Box and Whisker plot, the majority of the girls’ scores were slower than the boys’ scores, as was the median. To determine more accurately the difference between male and female Year 9 students’ reaction times, we could have tested many more students. This would have given us more reliable data. Overall, we determined that male Year 9 students have a slightly faster reaction time than female students.