Recent developments in density imbalanced Fermi gases Päivi Törmä Symposium on Quantum Phenomena and Devices at Low Temperatures Espoo, March 30th 2008.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
Wigner approach to a two-band electron-hole semi-classical model n. 1 di 22 Graz June 2006 Wigner approach to a two-band electron-hole semi-classical model.
Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Creating new states of matter:
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Year 6 mental test 5 second questions
Richmond House, Liverpool (1) 26 th January 2004.
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
ABC Technology Project
BY N.V.N.JYOTHI & DR. SN SAKARKAR M.PHARMACY PHARMACEUTICS.
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
Addition 1’s to 20.
25 seconds left…...
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
PSSA Preparation.
How Cells Obtain Energy from Food
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Fermions and Bosons From the Pauli principle to Bose-Einstein condensate.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
What Do High Tc Superconductors Teach Us About Ultracold Superfluids and Vice Versa? Fermi National Laboratory Jan 2007.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Han Pu Rice University Collaborators: Lei Jiang (NIST/JQI) Hui Hu, Xia-Ji Liu (Swinburne) Yan Chen (Fudan U.) 2013 Hangzhou Workshop on Quantum Matter.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
The Nature of the Pseudogap in Ultracold Fermi Gases Univ. of Washington May 2011.
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Copenhagen, June 15, 2006 Unitary Polarized Fermi Gases Erich J. Mueller Cornell University Sourish Basu Theja DeSilva NSF, Sloan, CCMR Outline: Interesting.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Stationary Josephson effect throughout the BCS-BEC crossover Pierbiagio Pieri (work done with Andrea Spuntarelli and Giancarlo C. Strinati) Dipartimento.
Bogoliubov-de Gennes Study of Trapped Fermi Gases Han Pu Rice University (INT, Seattle, 4/14/2011) Leslie Baksmaty Hong Lu Lei Jiang Randy Hulet Carlos.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
strongly interacting fermions: from spin mixtures to mixed species
University of Michigan
On Superfluid Properties of Asymmetric Dilute Fermi Systems
Spectroscopy of Superfluid Atomic Fermi Gases
Molecular Transitions in Fermi Condensates
Novel quantum states in spin-orbit coupled quantum gases
Phase diagram of s-wave SC Introduction
Chengfu Mu, Peking University
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Probes of Pairing in Strongly Interacting Fermions
Pairing in Imbalanced Fermi Mixtures: Cold Atom Clouds and Neutron Stars printen Utrecht University.
Theory of RF spectroscopy in Strongly Interacting Fermi Gases
Erich Mueller Cornell University
Induced p-wave superfluidity in asymmetric Fermi gases
Presentation transcript:

Recent developments in density imbalanced Fermi gases Päivi Törmä Symposium on Quantum Phenomena and Devices at Low Temperatures Espoo, March 30th 2008 Helsinki University of Technology

2 Motivation Recent experiments on density imbalanced Fermi gases: phase separation; non-Fermi liquid normal states??? Imbalanced Fermi gases and FFLO state in optical lattices Non-BCS pairing with non-equal mass/number/chemical potential??? Of interest in high energy, nuclear, and solid state physics FFLO (spatially varying order parameter); no unambiguous observation yet Exact numerical studies of RF-spectroscopy RF spectroscopy: important method for probing quantum states of ultracold gases Deeper theoretical understanding needed, only linear response applied so far

3 Fermi condensates BEC-BCS crossover Related to, e.g., high temperature superconductivity Tuning Parameter (e.g. B) MoleculesUnitarity regime Cooper pairs Fermi condensate experiments have confirmed that the BCS-BEC evolution is a crossover Groups of: Grimm, Jin, Ketterle, Thomas, Salomon

4 Imbalanced/Polarized Fermi gases Pairing between particles with unequal mass or unequal total number Related to, e.g., high energy physics (colour superconductivity of quarks) Polarization Experiments: M.W.Zwierlein, A.Schirotzek, C.H.Schunck, W.Ketterle, Science 2006 G.B.Partridge, W.Li,R.I.Kamar, Y.Liao, R.G.Hulet, Science 2006 G.B.Partridge, W.Li,Y.Liao, R.G.Hulet, M.Haque, H.Stoof, PRL 2006 M.W.Zwierlein, C.H.Schunck, A.Schirotzek, W.Ketterle, Nature 2006 C.H.Schunck, Y.Shin, A.Schirotzek, M.W. Zwierlein, W.Ketterle, Science 2007 Y.Shin, C.H.Schunck, A.Schirotzek, W.Ketterle, Nature 2008

5 P=0 P=1 M.W.Zwierlein, A.Schirotzek, C.H.Schunck, W.Ketterle, Science 2006

6 Shin, Zwierlein, Schunck, Schirotzek, Ketterle, PRL D reconstruction Partridge, Li, Liao, Hulet, Haque, Stoof, PRL 2006 Established: Phase separation in a harmonic trap: superfluid in the middle, normal state at the edges of trap

7 C.H.Schunck, Y.Shin, A.Schirotzek, M.W. Zwierlein, W.Ketterle, Science Value of the critical polarization? - Nature of the normal state?

8 FFLO (Fulde, Ferrel, Larkin, Ovchinnikov) state FFLO (Fulde, Ferrel, Larkin, Ovchinnikov) state  Finite polazation P and superfluidity simultaneously (also at T=0)  Non-uniform order parameter Observations under debate Observations under debate  H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature 2003  A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, PRL 2003  K. Kakuyanagi, M. Saitoh, K. Kumagai, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, PRL 2005  V.F. Correa, T.P. Murphy, C. Martin, K.M. Purcell, E.C. Palm, G.M. Schmiedeshoff, J.C. Cooley, S.W. Tozer, PRL 2007 The parameter window for existence of this phase is exceedingly small for particles in free space, in 3D The parameter window for existence of this phase is exceedingly small for particles in free space, in 3D  See e.g. D.E. Sheehy, L. Radzihovsky, PRL 2006 COULD ONE OBSERVE THE FFLO STATE IN ULTRACOLD GASES?

9 FFLO features for a trapped gas: interface effect c.f. K. Machida, T. Mizushima, M. Ichioka, PRL 2006 P=0.34P=0.88 J. Kinnunen, L.M. Jensen, P. Törmä, PRL 2006 L.M. Jensen, J. Kinnunen, P. Törmä, PRA 2007

10 Imbalanced gases in optical lattices Minimize Phase separation T. Koponen, J. Kinnunen, J.-P. Martikainen, L.M. Jensen, P. Törmä, New J. Phys T. Koponen, T. Paananen, J.-P. Martikainen, P. Törmä, PRL 2007 Order parameter (gap)Quasiparticle energy

11 FFLO area is much bigger than in other systems (due to nesting of Fermi surfaces)

12 Fermi surfaces Free space Lattice

13 T.K. Koponen, T. Paananen, J.-P. Martikainen, M.R. Bakhtiari, P. Törmä, New J. Phys VanHove singularities show up in the phase diagrams 3D2D 1D

14 Observation, e.g., by noise correlations 1DBCSFFLO

15 Exact numerical studies of RF-spectroscopy | 1 > | 2 > | f > Hartree mean fields - C. Regal and D. Jin, PRL S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle, Science 2003 Pairing - C. Chin, M. Bartenstein, A. Altmayer, S. Riedl, S. Jochim, J.H. Denschlag, R. Grimm, Science T. Stöferle, H. Moritz, K. Gunter, M. Köhl, T. Esslinger, PRL C.H. Schunck, Y. Shin, A. Schirotzek, W. Ketterle, Science And more by Grimm, Ketterle groups RF-spectroscopy experiments no interactions |1>, |2> (and |3>) interacting 00

T F 0.26T F ~ T c 0.18T F 0.10T F T C. Chin, M. Bartenstein, A. Altmayer, S. Riedl, S. Jochim, J.H. Denschlag, and R. Grimm, Science 305, 1128, 2004 J. Kinnunen, M. Rodriguez, P. Törmä, Science 305, 1131, 2004

17 C.H.Schunck, Y.Shin, A.Schirotzek, M.W. Zwierlein, W.Ketterle, Science 2007

18 What is RF-spectroscopy? Coherent rotation (like spin precession in 3 He)? Creation of quasiparticles (like tunneling)? - P. Törmä, P. Zoller, PRL J. Kinnunen, M. Rodriguez, P. Törmä, Science Y. He, Q. Chen, K. Levin,PRA Y. Ohashi, A. Griffin, PRA A. Perali, P. Pieri, G.C. Strinati, PRL S. Basu, E. Mueller, arXiv: P. Massignan, G.M. Bruun, H. Stoof PRA M. Veillette, E.G. Moon, A. Lamarcraft, L. Radzihovsky, S. Sachdev, D.E. Sheehy, arXiv: And more by Törmä, Levin, Griffin, Mueller - M.W. Zwierlein, Z. Hadzibabic, S. Gupta,W. Ketterle, PRL Z.Yu, G. Baym, PRA M.Punk, W.Zwerger, PRL G.Baym, C.J.Pethick, Z.Yu, M.W.Zwierlein, PRL 2007

19 Linear response In both cases:

20 Linear response Discussion: M.J. Leskinen, V. Apaja, J. Kajala, P. Törmä, cond-mat/ Fermi Golden rule Sum rules:

21 Quasiparticle creationCoherent rotation Likely to happen when - Decoherence (“projection measurement”) - Coupling to continuum - Coherent time evolution (“projection measurement” only after the pulse) - Coupling to a similar final state Linear response

22 Exact solution (no mean field, fully coherent time evolution, no linear response), in 1D, using Matrix Product State (related to DMRG) methods (G. Vidal, PRL 2003, 2004) M.J. Leskinen, V. Apaja, J. Kajala, P. Törmä, cond-mat/ Ground state Time evolution (pulse) ⇒ Spectrum

23 M.J. Leskinen, V. Apaja, J. Kajala, P. Törmä, cond-mat/ Linear response sum rule result ● 1% of |2> transferred * 5% △ 50% ▇ Quasiparticle picture

24 Summary Density imbalanced Fermi gases: superfluidity, phase separation, nature of the strongly interacting normal state, exotic pairing and superfluidity Density imbalanced Fermi gases: superfluidity, phase separation, nature of the strongly interacting normal state, exotic pairing and superfluidity FFLO state stable in optical lattices (flat Fermi surfaces) FFLO state stable in optical lattices (flat Fermi surfaces) Nonlinear effects considerably suppress the pairing signal in RF-spectroscopy (exact calculations in 1D, coherent rotation) Nonlinear effects considerably suppress the pairing signal in RF-spectroscopy (exact calculations in 1D, coherent rotation)