1 QUADRATIC EXPLANATORY VARIABLES We will now consider models with quadratic explanatory variables of the type shown. Such a model can be fitted using.

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

EC220 - Introduction to econometrics (chapter 1)
1 Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate.
ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source.
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS
1 SIMULTANEOUS EQUATIONS MODELS Most of the issues relating to the fitting of simultaneous equations models with time series data are similar to those.
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: Ramsey’s reset test of functional misspecification Original citation:
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
EC220 - Introduction to econometrics (chapter 1)
1 QUADRATIC EXPLANATORY VARIABLES We will now consider models with quadratic explanatory variables of the type shown. Such a model can be fitted using.
LINEARITY AND NONLINEARITY 1 This sequence introduces the topic of fitting nonlinear regression models. First we need a definition of linearity. Linear.
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 MAXIMUM LIKELIHOOD ESTIMATION OF REGRESSION COEFFICIENTS X Y XiXi 11  1  +  2 X i Y =  1  +  2 X We will now apply the maximum likelihood principle.
MODELS WITH A LAGGED DEPENDENT VARIABLE
EC220 - Introduction to econometrics (chapter 6)
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
1 BINARY CHOICE MODELS: LINEAR PROBABILITY MODEL Economists are often interested in the factors behind the decision-making of individuals or enterprises,
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: the use of simulation Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a random variable Original citation: Dougherty,
EC220 - Introduction to econometrics (chapter 5)
The third sequence defined the expected value of a function of a random variable X. There is only one function that is of much interest to us, at least.
CHOW TEST AND DUMMY VARIABLE GROUP TEST
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 10)
EC220 - Introduction to econometrics (chapter 4)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 QUADRATIC EXPLANATORY VARIABLES We will now consider models with quadratic explanatory variables of the type shown. Such a model can be fitted using OLS with no modification.

2 However, the usual interpretation of a parameter, that it represents the effect of a unit change in its associated variable, holding all other variables constant, cannot be applied. It is not possible for X 2 to change without X 2 2 also changing. QUADRATIC EXPLANATORY VARIABLES

3 Differentiating the equation with respect to X 2, one obtains the change in Y per unit change in X 2. Thus, the impact of a unit change in X 2 on Y, (   3 X 2 ), is a function of X 2. QUADRATIC EXPLANATORY VARIABLES

4 This means that  2 has an interpretation that is different from that in the ordinary linear model where it is the unqualified effect of a unit change in X 2 on Y. QUADRATIC EXPLANATORY VARIABLES

5 In this model,  2 should be interpreted as the effect of a unit change in X 2 on Y for the special case where X 2 = 0. For nonzero values of X 2, the marginal effect will be different. QUADRATIC EXPLANATORY VARIABLES

6  3 also has a special interpretation. If we rewrite the model as shown,  3 can be interpreted as the rate of change of the coefficient of X 2, per unit change in X 2. QUADRATIC EXPLANATORY VARIABLES

7 Only  1 has a conventional interpretation. As usual, it is the value of Y (apart from the random component) when X 2 = 0. QUADRATIC EXPLANATORY VARIABLES

8 There is a further problem. We know that the estimate of the intercept may have no sensible meaning if X 2 = 0 is outside the data range. If X 2 = 0 lies outside the data range, the same type of distortion can happen with the estimate of  2. QUADRATIC EXPLANATORY VARIABLES

9 We will illustrate this with the earnings function. The table gives the output of a quadratic regression of earnings on schooling (SSQ is defined as the square of schooling). QUADRATIC EXPLANATORY VARIABLES. gen SSQ = S*S. reg EARNINGS S SSQ Source | SS df MS Number of obs = F( 2, 537) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | SSQ | _cons |

10 The coefficient of S implies that, for an individual with no schooling, the impact of a year of schooling is to decrease hourly earnings by $2.77. QUADRATIC EXPLANATORY VARIABLES. gen SSQ = S*S. reg EARNINGS S SSQ Source | SS df MS Number of obs = F( 2, 537) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | SSQ | _cons |

11 The intercept also has no sensible interpretation. Literally, it implies that an individual with no schooling would have hourly earnings of $22.25, which is implausibly high. QUADRATIC EXPLANATORY VARIABLES. gen SSQ = S*S. reg EARNINGS S SSQ Source | SS df MS Number of obs = F( 2, 537) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | SSQ | _cons |

12 The quadratic relationship is illustrated in the figure. Over the range of the actual data, it fits the observations tolerably well. The fit is not dramatically different from those of the linear and semilogarithmic specifications. QUADRATIC EXPLANATORY VARIABLES EARNINGS | Coef S | SSQ | _cons |

13 QUADRATIC EXPLANATORY VARIABLES However, when one extrapolates beyond the data range, the quadratic function increases as schooling decreases, giving rise to implausible estimates of both  1 and  2 for S = EARNINGS | Coef S | SSQ | _cons |

14 QUADRATIC EXPLANATORY VARIABLES In this example, we would prefer the semilogarithmic specification, as do all wage-equation studies EARNINGS | Coef S | SSQ | _cons |

15 QUADRATIC EXPLANATORY VARIABLES The slope coefficient of the semilogarithmic specification has a simple interpretation and the specification does not give rise to nonsensical predictions outside the data range EARNINGS | Coef S | SSQ | _cons |

16 The data on employment growth rate, e, and GDP growth rate, g, for 25 OECD countries in Exercise 1.4 provide a less problematic example of the use of a quadratic function. QUADRATIC EXPLANATORY VARIABLES Average annual percentage growth rates Employment GDP Employment GDP Australia Korea Austria Luxembourg Belgium Netherlands Canada New Zealand Denmark Norway Finland– Portugal France Spain Germany Sweden– Greece Switzerland Iceland– Turkey Ireland United Kingdom Italy– United States Japan

17 The output from a quadratic regression is shown. gsq has been defined as the square of g.. gen gsq = g*g. reg e g gsq Source | SS df MS Number of obs = F( 2, 22) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | gsq | _cons | QUADRATIC EXPLANATORY VARIABLES

18 The quadratic specification appears to be an improvement on the hyperbolic function fitted in a previous slideshow. It is more satisfactory than the latter for low values of g, in that it does not yield implausibly large negative predicted values of e. QUADRATIC EXPLANATORY VARIABLES e | Coef g | gsq | _cons |

19 The only defect is that it predicts that the fitted value of e starts to fall when g exceeds 7. QUADRATIC EXPLANATORY VARIABLES e | Coef g | gsq | _cons |

20 Why stop at a quadratic? Why not consider a cubic, or quartic, or a polynomial of even higher order? There are usually several good reasons for not doing so. QUADRATIC EXPLANATORY VARIABLES

21 QUADRATIC EXPLANATORY VARIABLES Diminishing marginal effects are standard in economic theory, justifying quadratic specifications, at least as an approximation, but economic theory seldom suggests that a relationship might sensibly be represented by a cubic or higher-order polynomial.

22 QUADRATIC EXPLANATORY VARIABLES The second reason follows from the first. There will be an improvement in fit as higher- order terms are added, but because these terms are not theoretically justified, the improvement will be sample-specific.

23 QUADRATIC EXPLANATORY VARIABLES Third, unless the sample is very small, the fits of higher-order polynomials are unlikely to be very different from those of a quadratic over the main part of the data range.

24 QUADRATIC EXPLANATORY VARIABLES These points are illustrated by the figure, which shows cubic and quartic regressions with the quadratic regression. Over the main data range, from g = 1.5 to g = 4, the fits of the cubic and quartic are very similar to that of the quadratic.

25 QUADRATIC EXPLANATORY VARIABLES R 2 for the quadratic specification is For the cubic and quartic it is and 0.658, relatively small improvements.

26 QUADRATIC EXPLANATORY VARIABLES Further, the cubic and quartic curves both exhibit implausible characteristics. The cubic declines even more rapidly than the quadratic for high values of g, and the quartic has strange twists at its extremities.

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 4.3 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course EC2020 Elements of Econometrics