Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany CAST Collaboration Meeting, May 2008, Paris, FranceTitle Georg Raffelt, Max-Planck-Institut.
Observational constraints and cosmological parameters
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Particle Physics and Cosmology cosmological neutrino abundance.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Neutrinos and the large scale structure
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Does WMAP data constrain the lepton asymmetry of the Universe to be zero? M. Lattanzi*, R. Ruffini, G.V. Vereshchagin Dip. di Fisica - Università di Roma.
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
1 Neutrino properties from cosmological measurements Cosmorenata June’13 Olga Mena IFIC-CSIC/UV.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
The Cosmic Microwave Background
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
Cheng Zhao Supervisor: Charling Tao
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Is Cosmic Acceleration Slowing Down? Invisible Universe-UNESCO-Paris 29 th June-3 rd July 2009 Arman Shafieloo Theoretical Physics, University of Oxford.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Summary Neta A. Bahcall Princeton University
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Recent status of dark energy and beyond
Precision cosmology and neutrinos
GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Measurements of Cosmological Parameters
6-band Survey: ugrizy 320–1050 nm
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν

Neutrino Physics and Cosmology 3rd lecture Bounds on m ν from CMB, LSS and other data Bounds on the radiation content (N eff ) Future sensitivities on m ν from cosmology

Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark

Neutrinos as Hot Dark Matter Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation (combined with other cosmological data)

How to get a bound (measurement) of neutrino masses from Cosmology DATA Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) PARAMETER ESTIMATES

Cosmological Data CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA…) CMB Polarization: WMAP,… Large Scale Structure: * Galaxy Clustering (2dF,SDSS) * Bias (Galaxy, …): Amplitude of the Matter P(k) (SDSS,σ 8 ) * Lyman-α forest: independent measurement of power on small scales * Baryon acoustic oscillations (SDSS) Bounds on parameters from other data: SNIa (Ω m ), HST (h), …

Cosmological Parameters: example SDSS Coll, PRD 69 (2004)

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! ν

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! Different analyses have found upper bounds on neutrino masses, since they depend on The combination of cosmological data used The assumed cosmological model: number of parameters (problem of parameter degeneracies) The properties of relic neutrinos

Cosmological bounds on neutrino masses using WMAP1 Bound on Σm ν (eV) [95% CL] Data used Ichikawa et al, PRD 71 (2005) Sánchez et al, MNRAS 366 (2006) 189 MacTavish et al, astro-ph/ CMB only Hannestad, JCAP 0305 (2003) 004 SDSS Coll., PRD 69 (2004) Barger et al, PLB 595 (2004) 55 Crotty et al, PRD 69 (2004) Rebolo et al, MNRAS 353 (2004) 747 Fogli et al. PRD 70 (2004) Seljak et al, PRD 71 (2005) Sánchez et al, MNRAS 366 (2006) 189 MacTavish et al, astro-ph/ [ ] WMAP1, other CMB, 2dF/SDSS-gal [HST,SNIa] WMAP Coll., ApJ Suppl 148 (2003) 175 Fogli et al. PRD 70 (2004) Seljak et al, PRD 71 (2005) MacTavish et al, astro-ph/ Hannestad, hep-ph/ WMAP1, other CMB, 2dF/SDSS-gal, 2dF/SDSS-bias and/or Ly-α

Cosmological bounds on neutrino masses using WMAP3 Bound on Σm ν (eV) [95% CL] Data used WMAP Coll., astro-ph/ Fukugita et al, astro-ph/ Kristiansen et al, astro-ph/ – 2.3 CMB only WMAP Coll., astro-ph/ Goobar et al, astro-ph/ – 0.91 WMAP3, other CMB, 2dF/SDSS- gal, SNIa Goobar et al, astro-ph/ Seljak et al, astro-ph/ Kristiansen et al, astro-ph/ WMAP3, other CMB, 2dF/SDSS- gal, SDSS-BAO and/or Ly-α Fogli et al., hep-ph/

Neutrino masses in 3-neutrino schemes Fig from Strumia & Vissani, NPB726(2005)294 CMB + galaxy clustering + HST, SNI-a…+ BAO and/or bias + including Ly- α

Tritium  decay, 0 2  and Cosmology Fogli et al., hep-ph/

0 2  and Cosmology Fogli et al., hep-ph/

Parameter degeneracy: Neutrino mass and w In cosmological models with more parameters the neutrino mass bounds can be relaxed. Ex: quintessence-like dark energy with ρ DE =w p DE WMAP Coll, astro-ph/ Λ

At T<m e, the radiation content of the Universe is Effective number of relativistic neutrino species Traditional parametrization of the energy density stored in relativistic particles Relativistic particles in the Universe

Extra radiation can be: scalars, pseudoscalars, sterile neutrinos (totally or partially thermalized, bulk), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles… Particular case: relic neutrino asymmetries Constraints on N eff from BBN and from CMB+LSS Extra relativistic particles

Effect of N eff at later epochs N eff modifies the radiation content: Changes the epoch of matter-radiation equivalence

CMB+LSS: allowed ranges for N eff Set of parameters: ( Ω b h 2, Ω cdm h 2, h, n s, A, b, N eff ) DATA: WMAP + other CMB + LSS + HST (+ SN-Ia) Flat Models Non-flat Models Recent result Pierpaoli, MNRAS 342 (2003) 95% CL Crotty, Lesgourgues & SP, PRD 67 (2003) 95% CL Hannestad, JCAP 0305 (2003) Hannestad & Raffelt, astro-ph/ % CL

Future bounds on N eff Next CMB data from WMAP and PLANCK (other CMB experiments on large l’s) temperature and polarization spectra Forecast analysis in Ω Λ =0 models Lopez et al, PRL 82 (1999) 3952 WMAP PLANCK

Future bounds on N eff Updated analysis: Larger errors Bowen et al 2002 ΔN eff ~ 3 (WMAP) ΔN eff ~ 0.2 (Planck) Bashinsky & Seljak 2003

The bound on Σm ν depends on the number of neutrinos Example: in the 3+1 scenario, there are 4 neutrinos (including thermalized sterile) Calculate the bounds with N ν > 3 Abazajian 2002, di Bari 2002 Hannestad JCAP 0305 (2003) 004 (also Elgarøy & Lahav, JCAP 0304 (2003) 004) 3 ν 4 ν 5 ν Hannestad 95% CL WMAP + Other CMB + 2dF + HST + SN-Ia

Σm ν and N eff degeneracy (0 eV,3) (0 eV,7) (2.25 eV,7) (0 eV,3) (0 eV,7) (2.25 eV,7)

Analysis with Σm ν and N eff free Hannestad & Raffelt, JCAP 0404 (2004) 008 Crotty, Lesgourgues & SP, PRD 69 (2004) σ upper bound on Σm ν ( eV) WMAP + ACBAR + SDSS + 2dF Previous + priors (HST + SN-Ia)

Analysis with Σm ν and N eff free Crotty, Lesgourgues & SP, PRD 69 (2004) WMAP + ACBAR + SDSS + 2dF Hannestad & Raffelt, astro-ph/

Non-standard relic neutrinos The cosmological bounds on neutrino masses are modified if relic neutrinos have non-standard properties (or for non-standard models) Two examples where the cosmological bounds do not apply Massive neutrinos strongly coupled to a light scalar field: they could annihilate when becoming NR Neutrinos coupled to the dark energy: the DE density is a function of the neutrino mass (mass-varying neutrinos)

Non-thermal relic neutrinos The spectrum could be distorted after neutrino decoupling Example: decay of a light scalar after BBN Cuoco, Lesgourgues, Mangano & SP, PRD 71 (2005) Thermal FD spectrum Distortion from  decay * CMB + LSS data still compatible with large deviations from a thermal neutrino spectrum (degeneracy NT distortion – N eff ) * Better expectations for future CMB + LSS data, but model degeneracy NT- N eff remains

Future sensitivities to Σm ν 1.CMB (T+P) + galaxy redshift surveys 2.CMB (T+P) and CMB lensing 3.Weak lensing surveys 4.Weak lensing surveys + CMB lensing When future cosmological data will be available

PLANCK+SDSS Lesgourgues, SP & Perotto, PRD 70 (2004) Σm detectable at 2σ if larger than 0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS) Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) = (0.0245, 0.148, 0.70, 0.98, 0.12, Σm ν ) Fisher matrix analysis: expected sensitivities assuming a fiducial cosmological model, for future experiments with known specifications

Future sensitivities to Σm ν : new ideas weak gravitational and CMB lensing lensing No bias uncertainty Small scales much closer to linear regime Tomography: 3D reconstruction Makes CMB sensitive to smaller neutrino masses

Future sensitivities to Σm ν : new ideas sensitivity of future weak lensing survey (4000º) 2 to m ν σ(m ν ) ~ 0.1 eV Abazajian & Dodelson PRL 91 (2003) sensitivity of CMB (primary + lensing) to m ν σ(m ν ) = 0.15 eV (Planck) σ(m ν ) = eV (CMBpol) Kaplinghat, Knox & Song PRL 91 (2003) weak gravitational and CMB lensing lensing

CMB lensing: recent analysis σ(M ν ) in eV for future CMB experiments alone : Lesgourgues et al, PRD 73 (2006)

Summary of future sensitivities Lesgourgues & SP, Phys. Rep. 429 (2006) 307 Future cosmic shear surveys

End of 3rd lecture