“Teach A Level Maths” Statistics 1

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 1: AS Core Modules
Advertisements

“Teach A Level Maths” Statistics 2
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
34: A Trig Formula for the Area of a Triangle
The Binomial Distribution: Mean and Variance
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
“Teach A Level Maths” Vol. 2: A2 Core Modules
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Statistics 1
Calculating Residuals © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
55: The Vector Equation of a Plane © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
The Binomial Distribution: Using Tables © Christine Crisp “Teach A Level Maths” Statistics 1.
21: Simpson’s Rule © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
The Binomial Distribution © Christine Crisp “Teach A Level Maths” Statistics 1.
The Normal Distribution © Christine Crisp “Teach A Level Maths” Statistics 1.
Reversing Normal Calculations Statistics 2. Reversing Normal Calculations In the previous presentation there was an example where a claim was made that.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
The Central Limit Theorem © Christine Crisp “Teach A Level Maths” Statistics 1.
Discrete Random Variables
15: The Gradient of the Tangent as a Limit © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
41: Trig Equations © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
47: More Logarithms and Indices
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
The Discrete Uniform Distribution © Christine Crisp “Teach A Level Maths” Statistics 1.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Finding the Normal Mean and Variance © Christine Crisp “Teach A Level Maths” Statistics 1.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Linear Functions of a Discrete Random Variable
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
34: A Trig Formula for the Area of a Triangle
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
40: Radians, Arc Length and Sector Area
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Presentation transcript:

“Teach A Level Maths” Statistics 1 Standardizing to z © Christine Crisp

( available from Efofex at www.efofex.com ) S1: Standardizing to z AQA Edexcel Normal Distribution diagrams in this presentation have been drawn using FX Draw ( available from Efofex at www.efofex.com ) "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

We can’t have a table of probabilities for every possible mean and variance ( as we would need an infinite number of tables! ) So, we always standardise to . ( Mean = 0, variance = 1 ). This is easy to do. If X is a random variable with distribution then, if Since this formula holds for X, it also holds for all the values of X, given by x. The rule is “subtract the mean and divide by the standard deviation”

x = 400, so e.g.1 If X is a random variable with distribution find (a) (b) Solution: (a) x = 400, so Tables only give 2 d.p. for z so this is all we need. So,

e.g.1 If X is a random variable with distribution find (a) (b) Solution: (b) There are 2 values to convert so we use subscripts for z. N.B. This is left of the mean so the z value will be negative. So,

e.g.1 If X is a random variable with distribution find (a) (b) Solution: (b)

Tip: The diagrams for X and Z show the same areas so I don’t always draw both. If the question is straightforward I draw only the Z diagram but if I’m not sure what to do I’ll draw the X diagram ( and maybe the Z one as well ). SUMMARY To use tables to solve problems, we convert the values of the random variable X to values of the standardised normal variable using We need to be careful not to confuse standard deviation and variance. e.g. means s = 4.

e. g. 2 A batch of batteries is claimed to last for 24 hours e.g.2 A batch of batteries is claimed to last for 24 hours. In fact their running time has a normal distribution with mean time of 29 hours and standard deviation 6 hours. What proportion of batteries do not last for the claimed time? Solution: Let X be the random variable “ life of battery ( hours )”

e. g. 2 A batch of batteries is claimed to last for 24 hours e.g.2 A batch of batteries is claimed to last for 24 hours. In fact their running time has a normal distribution with mean time of 29 hours and standard deviation 6 hours. What proportion of batteries do not last for the claimed time? Solution: Let X be the random variable “ life of battery ( hours )” We want to find

e. g. 2 A batch of batteries is claimed to last for 24 hours e.g.2 A batch of batteries is claimed to last for 24 hours. In fact their running time has a normal distribution with mean time of 29 hours and standard deviation 6 hours. What proportion of batteries do not last for the claimed time? Solution: Let X be the random variable “ life of battery ( hours )” We want to find So, Approximately 20% do not last for 24 hours.

Exercise 1. If X is a random variable with distribution find (a) (b) (c) 2. A shop sells curtain rails labelled 90 cm. In fact the lengths are normally distributed with mean 90·2 cm. and standard deviation 0·4 cm. What percentage of the rails are shorter than 90 cm ?

Solutions: (a) 1. ( This is 1 standard deviation above the mean. )

Solutions: 1. (b)

Solutions: 1. (c)

2. A shop sells curtain rails labelled 90 cm 2. A shop sells curtain rails labelled 90 cm. In fact the lengths are normally distributed with mean 90·2 cm. and standard deviation 0·4 cm. What percentage of the rails are shorter than 90 cm ? Solution: Let X be the random variable “length of rail (cm)” We want to find Approximately 31% are shorter than 90 cm.

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

We can’t have a table of probabilities for every possible mean and variance ( as we would need an infinite number of tables! ) So, we always standardise to . ( Mean = 0, variance = 1 ). This is easy to do. If X is a random variable with distribution then, if The rule is “subtract the mean and divide by the standard deviation” Since this formula holds for X, it also holds for all the values of X, given by x.

SUMMARY We need to be careful not to confuse standard deviation and variance. e.g. means s = 4. To use tables to solve problems, we convert the values of the random variable X to values of the standardised normal variable using

x = 400, so e.g.1 If X is a random variable with distribution Tables only give 2 d.p. for z so this is all we need. Solution: (a) x = 400, so e.g.1 If X is a random variable with distribution find (a) (b)

Solution: (b)

e. g. 2 A batch of batteries is claimed to last for 24 hours e.g.2 A batch of batteries is claimed to last for 24 hours. In fact their running time has a normal distribution with mean time of 29 hours and standard deviation 6 hours. What proportion of batteries do not last for the claimed time? Solution: Let X be the random variable “ life of battery ( hours )” We want to find So, Approximately 20% do not last for 24 hours.