AP Biology 2007-2008 DNA Replication AP Biology Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated.

Slides:



Advertisements
Similar presentations
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
Advertisements

DNA Replication
DNA Replication.
AP Biology DNA Replication Ch.12.2 AP Biology DNA Replication  Purpose: cells need to make a copy of DNA before dividing so each daughter.
DNA Replication Ch. 16 Watson and Crick 1953 article in Nature.
به نام پروردگار زیست شناسی سلولی و مولکولی DNA و همانندسازی آن.
Genetics DNA Replication Genetics Why do cells divide…  for reproduction  One celled organisms (clones)  for growth & development  From.
AP Biology Synthesis of DNA June
Chapter 16 DNA Replication
AP Biology DNA Replication STRUCTURE OF NUCLEIC ACIDS Sugar can be DEOXYRIBOSE (DNA) RIBOSE (RNA) Built from NUCLEOTIDE SUBUNITS NITROGEN BASES.
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
AP Biology DNA Replication AP Biology Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated.
DNA Replication Watson and Crick 1953 article in Nature.
DNA Replication Copying DNA Replication of DNA – base pairing – new strand is 1/2 parent template & 1/2 new DNA semi-conservative copy process.
AP Biology Chapter 16 DNA Replication Slides with blue borders come from a slide show by Kim Foglia (
DNA Replication
AP Biology DNA Replication AP Biology Watson and Crick 1953 article in Nature.
Warm-up: Identify the components of the following parts of DNA :
DNA Replication Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated immediately suggests.
AP Biology S-Phase: Deoxyribonucleic Acid The Molecular Basis of Inheritance DNA Structure DNA Replication.
AP Biology DNA Replication AP Biology proteinRNA The “Central Dogma” DNA transcriptiontranslation replication  Flow of genetic information.
AP Biology Nucleic Acids Information storage.
DNA Replication Functions of DNA 1. Replication – Occurs before Mitosis and meiosis only Produces an exact copy of DNA 2. Transcription – DNA makes mRNA.
DNA Replication Unit 5B.2.
DNA Replication.
DNA Replication Watson and Crick 1953 article in Nature.
DNA Replication
DNA Replication DNA → RNA → Protein replication
Nucleic Acids Information storage
DNA Replication Ch. 16.
DNA Structure & Replication
Monday, 1/6/14 Collect HW: Chp Guided Reading & Bozeman Video Guide
DNA Replication
DNA Replication
Win at Shmoop! Discuss at least 5 differences between DNA and RNA
DNA Replication
I create a video presenting the steps of DNA replication (S phase)
DNA Replication.
DNA Replication
Chapter 16 DNA Replication
Chapter 16 DNA Replication
DNA Replication.
DNA Replication
DNA Structure and Replication
DNA Replication
DNA Replication
DNA Replication
DNA Molecular basis of herdity.
Deoxyribonucleic Acid
DNA Replication
DNA Replication
Tuesday, 1/8/13 Complete Chp.16 Notes
DNA Replication
DNA Replication
DNA Replication
DNA Replication
DNA Replication
Nucleic Acids Information storage
DNA Replication
DNA Replication
DNA Replication
DNA: the basics.
DNA Replication
DNA Replication
DNA Replication
Directionality of DNA You need to number the carbons! nucleotide
Deoxyribonucleic Acid
Nucleic Acids Information storage
DNA Replication
DNA Replication
Presentation transcript:

AP Biology DNA Replication

AP Biology Double helix structure of DNA “It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.”Watson & Crick

AP Biology Directionality of DNA  You need to number the carbons!  it matters! OH CH 2 O PO 4 N base ribose nucleotide This will be IMPORTANT!!

AP Biology The DNA backbone  Putting the DNA backbone together  refer to the 3 and 5 ends of the DNA  the last trailing carbon OH O 3 PO 4 base CH 2 O base O P O C O –O–O CH Sounds trivial, but … this will be IMPORTANT!!

AP Biology Anti-parallel strands  Nucleotides in DNA backbone are bonded from phosphate to sugar between 3 & 5 carbons  DNA molecule has “direction”  complementary strand runs in opposite direction

AP Biology Bonding in DNA ….strong or weak bonds? How do the bonds fit the mechanism for copying DNA? covalent phosphodiester bonds hydrogen bonds

AP Biology Base pairing in DNA  Purines  adenine (A)  guanine (G)  Pyrimidines  thymine (T)  cytosine (C)  Pairing  A : T  2 bonds  C : G  3 bonds

AP Biology Copying DNA  Replication of DNA  base pairing allows each strand to serve as a template for a new strand  new strand is 1/2 parent template & 1/2 new DNA

AP Biology DNA Replication  Large team of enzymes coordinates replication Let ’ s meet the team …

AP Biology Replication: 1st step  Unwind DNA  helicase enzyme  unwinds part of DNA helix replication fork helicase

AP Biology DNA Polymerase III Replication: 2nd step But … We ’ re missing something! What? Where ’ s the ENERGY for the bonding!  Build daughter DNA strand  add new complementary bases  DNA polymerase III

AP Biology energy ATP GTPTTPCTP Energy of Replication Where does energy for bonding usually come from? ADPAMPGMPTMPCMP modified nucleotide energy We come with our own energy! And we leave behind a nucleotide! You remember ATP! Are there other ways to get energy out of it? Are there other energy nucleotides? You bet!

AP Biology  Adding bases  can only add nucleotides to 3 end of a growing DNA strand  need a “starter” nucleotide to bond to  strand only grows 5  3 DNA Polymerase III DNA Polymerase III DNA Polymerase III DNA Polymerase III energy Replication energy B.Y.O. ENERGY! The energy rules the process 5

AP Biology energy need “primer” bases to add on to energy 3 no energy to bond energy ligase 35 

AP Biology Limits of DNA polymerase III  can only build onto 3 end of an existing DNA strand Leading & Lagging strands Leading strand Lagging strand Okazaki fragments ligase Okazaki Leading strand  continuous synthesis Lagging strand  Okazaki fragments  joined by ligase  “spot welder” enzyme DNA polymerase III  3 5 growing replication fork

AP Biology DNA polymerase III Replication fork / Replication bubble leading strand lagging strand leading strand lagging strand leading strand growing replication fork growing replication fork lagging strand 5 3

AP Biology DNA polymerase III RNA primer  built by primase  serves as starter sequence for DNA polymerase III Limits of DNA polymerase III  can only build onto 3 end of an existing DNA strand Starting DNA synthesis: RNA primers growing replication fork primase RNA

AP Biology DNA polymerase I  removes sections of RNA primer and replaces with DNA nucleotides But DNA polymerase I still can only build onto 3 end of an existing DNA strand Replacing RNA primers with DNA growing replication fork DNA polymerase I RNA ligase

AP Biology Replication fork 3’ 5’ 3’ 5’ 3’ 5’ helicase direction of replication primase DNA polymerase III DNA polymerase I ligase Okazaki fragments leading strand lagging strand

AP Biology Editing & proofreading DNA  1000 bases/second = lots of typos!  DNA polymerase I  proofreads & corrects typos  repairs mismatched bases  removes abnormal bases  repairs damage throughout life  reduces error rate from 1 in 10,000 to 1 in 100 million bases

AP Biology Fast & accurate!  It takes E. coli <1 hour to copy 5 million base pairs in its single chromosome  divide to form 2 identical daughter cells  Human cell copies its 6 billion bases & divide into daughter cells in only few hours  remarkably accurate  only ~1 error per 100 million bases  ~30 errors per cell cycle