SSB – Retrack Splinter Summary and 2007-2008 Perspectives OSTST Hobart, Tasmania March 15, 2007.

Slides:



Advertisements
Similar presentations
1 Eloise E. Kaizar The Ohio State University Combining Information From Randomized and Observational Data: A Simulation Study June 5, 2008 Joel Greenhouse.
Advertisements

2. The WAM Model: Solves energy balance equation, including Snonlin
The Wave Model ECMWF, Reading, UK.
Slide 1 The Wave Model ECMWF, Reading, UK. Slide 2The Wave Model (ECWAM) Resources: Lecture notes available at:
Lecture 2 ANALYSIS OF VARIANCE: AN INTRODUCTION
Proposed new uses for the Ceilometer Network
Chapter 7 Sampling and Sampling Distributions
OVERVIEW OF THE IMPROVEMENTS MADE ON THE EMPIRICAL DETERMINATION OF THE SEA STATE BIAS CORRECTION S. Labroue, P. Gaspar, J. Dorandeu, F. Mertz, N. Tran,
Radial-by-Radial Noise Power Estimation Igor Ivić and Christopher Curtis CIMMS/University of Oklahoma and NSSL/National Oceanic and Atmospheric Administration.
Calibration Method of Microwave Tb for Retrieving Accurate SST Akira Shibata JAXA / EORC Advances of Satellite Oceanography at Vladivostok, Oct. 3-6, 2007.
Chi-Square and Analysis of Variance (ANOVA)
1 WMO Workshop, Geneva - March 20-21, 2006J. PLA - CNES TOPEX and JASON SPACEBORNE ALTIMETERS Jean PLA CNES, Toulouse, France.
Page 1 ASAR Validatoin Review - ESRIN – 9-13 December 2002 Ocean geophysical results from ASAR  Geophysical overview  ocean spectra : the isidore case.
RA-2 & MWR CCVT – ESA/ESRIN – 25 to 27 March, 2003 MWR Calibration & Validation status MWR Cal/Val team: Ngan Tran, Estelle Obligis, Laurence Eymard, Michel.
Page - 1 RA2 CCVT meeting March 2003 F-PAC validation context CMA chain has to be inline with the algorithms approved by ESA and used for the prototype.
TOPEX & Jason Retracking OSTST ‘07 Retracking and SSB Splinter TOPEX and Jason Retracking Ernesto Rodriguez, Phil Callahan, Ted Lungu March 13, 2007 Jet.
Altimeter sea surface height bias calibration with in situ network G. Jan 1, P. Bonnefond 2, Y. Ménard 3, O. Laurain 2 1 NOVELTIS, Toulouse, France 2 OCA,
1 Verification of wave forecast models Martin Holt Jim Gunson Damian Holmes-Bell.
ECCO-2 and NASA Satellite Missions Lee-Lueng Fu Jet Propulsion Laboratory January 22-23, ECCO-2 Meeting.
CP4O Progress meeting 1 - Frascati November WP 5000 – Impact Assessment S. Labroue, T. Moreau, P. Thibaut (CLS) N. Picot, F. Boy (CNES)
ROMS User Workshop, October 2, 2007, Los Angeles
Draft Recommendations subtitle here. Recommendation 1 The study groups from this workshop continue to collaborate with the goal of reporting progress.
Time Variable Gravity Implementation issues for Jason L. Cerri, S. Houry, J.P. Berthias Ocean Topography Science Team Meeting - Hobart, Australia – March.
Chapter 11: The t Test for Two Related Samples
OMI ST meeting June 2008 Calibration & 0-1b data processing Marcel Dobber (KNMI)
Probabilistic Reasoning over Time
Retracking & SSB Splinter OSTST ‘07 Retracking and SSB Splinter Report Juliette Lambin and Phil Callahan March 14, 2007 Hobart, Tasmania.
26/11/2012 – Observatoire de Paris Analysis of wind speed evolution over ocean derived from altimeter missions and models M. Ablain (CLS)
Cal/Val and data consistency, Part 1: in-situ and regional Friday 17 March 2006, morning 08:30-12:30 Chairmen: P. Bonnefond, B. Haines & S. Nerem 08:30.
5-7 Feb Coastal Altimetry Workshop 11 Sea state bias correction in coastal waters D. Vandemark, S. LaBroue, R. Scharroo, V. Zlotnicki, H. Feng, N.
POD/Geoid splinter March 14, 2007 J.P. Berthias Ocean Topography Science Team Meeting - Hobart, Australia – March 2007.
Coastal Altimetry Workshop February 5-7, 2008 Organized by: Laury Miller, Walter Smith: NOAA/NESDIS Ted Strub, Amy Vandehey: CIOSS/COAS/OSU With help from.
- 1- Quality of real time altimeter products OSTST, Hobart, March 2007 Quality of real time altimeter products impact of the delay G.Larnicol, G. Dibarboure,
Page 1 Singular Value Decomposition applied on altimeter waveforms P. Thibaut, J.C.Poisson, A.Ollivier : CLS – Toulouse - France F.Boy, N.Picot : CNES.
POD/Geoid Splinter Summary OSTS Meeting, Hobart 2007.
Evaluation of the ground retracking algorithms on Jason-1 data P.Thibaut, S. Labroue Collecte Localisation Satellite : Toulouse, France.
Monitoring Jason-1 and TOPEX/POSEIDON from a California Offshore Platform: Latest Results from the Harvest Experiment Bruce Haines and Shailen Desai Jet.
ODINAFRICA/GLOSS Sea Level Training Course
OSTST, Hobart, March Future altimeter systems : is mesoscale observability guaranteed for operational oceanography? Future altimeter systems.
OSTST Hobart 2007 – SLA consistency between Jason-1 and TOPEX data SLA consistency between Jason-1 and TOPEX/Poseidon data M.Ablain, S.Philipps,
Coastal Altimetry Workshop - February 5-7, 2008 CNES initiative for altimeter processing in coastal zone : PISTACH Juliette Lambin – Alix Lombard Nicolas.
IRI Workshop 2005 TEC Measurements with Dual-Frequency Space Techniques and Comparisons with IRI T. Hobiger, H. Schuh Advanced Geodesy, Institute of Geodesy.
Sea Level Change Measurements: Estimates from Altimeters Understanding Sea Level Rise and Variability June 6-9, 2006 Paris, France R. S. Nerem, University.
CCI CCMUG meeting | 2-4th June 2014, Exeter, UK ESA’s Sea Level Climate Change Initiative M Ablain 1, G. Larnicol 1, A.Cazenave 2, B. Meyssygnac 2, J.Legeais.
Philip Moore Jiasong Wang School of Civil Engineering and Geosciences University of Newcastle upon Tyne Newcastle upon Tyne NE1 7RU
2007 OSTST meeting Y. Faugere (CLS) J. Dorandeu (CLS) F. Lefevre (CLS) Long period errors observed at Envisat crossovers and possible impact of tides.
OSTST Hobart 2007 – Performance assessment Jason-1 data M.Ablain, S.Philipps, J.Dorandeu, - CLS N.Picot - CNES Jason-1 GDR data Performance assessment.
OSTST - March Hobart 1 Impacts of atmospheric attenuations on AltiKa expected performances J.D. Desjonquères (1), N. Steunou (1) A. Quesney (2)
Improved Satellite Altimeter data dedicated to coastal areas :
Recent Results from the Corsica Calibration Site P. Bonnefond (1), P. Exertier (1), O. Laurain (1), Y. Ménard (2), F. Boldo (3), E. Jeansou (4), G. Jan.
Ocean Surface Topography Science Team, Reston, VA, USA, October, 2015 References Feng et al., Splin based nonparametric estimation of the altimeter.
Jason-1/Envisat cross-calibration Y. Faugere (CLS) J. Dorandeu (CLS) N. Picot (CNES) P. Femenias (ESA) Jason-1 / Envisat Cross-calibration.
Local and global calibration/validation P. Bonnefond, S. Desai, B. Haines, S. Nerem and N. Picot Jason-1 - T/P Sea Surface Height Formation Flying Phase.
Joint OS & SWH meeting in support of Wide-Swath Altimetry Measurements Washington D.C. – October 30th, 2006 Baptiste MOURRE ICM – Barcelona (Spain) Pierre.
Multi-Mission Cross Calibration – results with upgraded altimeter data Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München
2600 High Latitude Issues Data Editing AlgorithmInterestApplicability E1E2ENTPJ1J2G1C2 MSS based editingImproved data editingXXXxxxxx Fine tuned.
Value of Node Closest to HARVEST = 150 mm Value of Node Closest to SENETOSA = 117 mm Value of Node Closest to BURNIE = 154 mm SOUTH Mean = mm  =
Modification of JASON rain flag for MLE4 processing J.Tournadre 1IFREMER.
Orbit comparison for Jason-2 mission between GFZ and CNES (POE-D) The GFZ orbit is referred to as GFZ in the following study The CNES orbit is referred.
Inverse Barometer correction comparison for Envisat mission between Corrections based on JRA-55 and ERA-Interim atmospheric reanalyses The JRA-55 correction.
Validation of the TMR and JMR Wet Path delay Measurements using GPS, SSM/I, and TMI Shailen Desai Shannon Brown Bruce Haines Wenwen Lu Victor Zlotnicki.
OSTST Meeting, Hobart, Australia, March 12-15, 2007 On the use of temporal gravity field models derived from GRACE for altimeter satellite orbit determination.
Wet tropospheric correction comparison for Jason-1 mission between GPD V2.0 (FCUP) and GPD V1.1 corrections The GPD V2.0 correction is referred to as GPD_V2.0.
Jason-1 POD reprocessing at CNES Current status and further developments L. Cerri, S. Houry, P. Perrachon, F. Mercier. J.P. Berthias with entries from.
1 July 20, 2000 Geosat Follow-On An examination from an operational point of view Impact on operational products Overall system performance (from sensor.
C. Shum, C. Zhao, Y. Yi, and P. Luk The Ohio State University GFO Calibration/Validation Meeting NOAA Laboratory for Satellite Altimetry Silver Spring,
ESA Climate Change Initiative Sea-level-CCI project A.Cazenave (Science Leader), G.Larnicol /Y.Faugere(Project Leader), M.Ablain (EO) MARCDAT-III meeting.
L. Carrère, Y. Faugère, E. Bronner, J. Benveniste
(2) Norut, Tromsø, Norway Improved measurement of sea surface velocity from synthetic aperture radar Morten Wergeland Hansen.
Presentation transcript:

SSB – Retrack Splinter Summary and Perspectives OSTST Hobart, Tasmania March 15, 2007

OSTST Hobart /03/15 jl+psc Sea State Bias and Retracking Analysis Splinter ■Talks: ■0930 D. Vandemark, H. Feng, N. Tran, B. Chapron, B. Beckley Inclusion Of Wave Modeling In Sea State Bias Correction Refinement ■0950 E. Rodriguez, P. Callahan, T. Lungu Cross Calibration Of TOPEX And Jason Using MAP And LSE Retracking To Improve Global Sea Level ■1010 P. Thibaut, S. Labroue, N. Granie Evaluation Of Ground Retracking Algorithms On Jason Data ■1030 BREAK ■1100 Y. Faugere, A. Olivier, P. Thibaut, G. Dibarboure, N. Picot, J. Lambin Analysis Of The High Frequency Content Of Jason-1, Topex And Envisat Data ■1120 S. Labroue, M. Ablain, J. Dorandeu, N. Tran, P. Gaspar, O.Z. Zanife Comparison Of Topex And Jason-1 Sea State Bias Models ■1140 Discussion ■Posters: ■SSB-P1. TOPEX Retracked GDR – Features and Statistics, Philip S. Callahan, Ernesto Rodriguez, Ted Lungu ■SSB-P2. A New Altimeter Waveform Retracking Algorithm Based On Neural Networks, Arnaud Quesney, Eric Jensou, Juliette Lambin, Nicolas Picot ■SSB-P3. Unsupervised Classification Of Altimetric Waveform Over All Surface Type, Arnaud Quesney, Eric Jeansou, Christian Ruiz, Nathalie Steunou, Bruno Cugny, Nicolas Picot, Jean-Claude Souyris, Sylvie Thiria, Mustapha Lebbah ■SSB-P4. Sigma0 Blooms In The Envisat Radar Altimeter Data, Pierre Thibaut, F. Ferreira, Pierre Femenias ■SSB-P5. Simulator Of Interferometric Radar Altimeters: Concept And First Results, Pierre Thibaut, Olivier Germain, Fabrice Collard, Bruno Picard, Laurent Phalippou, Christopher Buck

OSTST Hobart /03/15 jl+psc Outline ■Brief review of presentations ■Review of discussion on JPL, CNES retracking and SSB ■We want to come to agreement today on the reprocessing approach for both TOPEX and Jason-1, so we can go ahead with the full reprocessing this year:  Would like endorsement of proposed approach

OSTST Hobart /03/15 jl+psc APPROACH Driving Assumption – information on wave steepness from global wave model can be integrated with altimeter H s and U 10 to improve routine sea state range corrections TRACK 1Nonparametric global SSB solutions using 2 input variables – SLA averaging method Inputs are [ H s, family of alternatives ] Tran et al., 2006 JGR - methods and 1 st results TRACK 2Three step clustering approach Partition measurements using fuzzy clustering Develop multi-class SSB solutions Combine to give single global result Vandemark et al.

OSTST Hobart /03/15 jl+psc Figure 7. Hard partition (max membership) class-specific direct SSB maps on U10 and Hs domain for 2000, 2001, and from TOPEX+ WW3-ecmwf (NASA-GSFC Pathfinder datasets: 1/10 of the total points) (200 samples in a cell) Vandemark et al.

OSTST Hobart /03/15 jl+psc Jason results using clustering-based NP SSB solution (6 classes) Systematic improvements at all latitudes and most regions in the spatial benchmark at right Not optimized yet so results will improve Vandemark et al.

OSTST Hobart /03/15 jl+psc Signal hidden by noise Noise hidden by oceanic signal Noise  Spectrum of oceanic signal s Plateau  A plateau on a power spectrum can be the signature of a white noise. Method and data used ■First method: spectral analysis of the SLA signal SLA(t) = s(t) +  (t), where s(t) is the geophysical signal and  (t) is the noise 1Hz spectra are computed from 10 days of data 20Hz spectra are computed from 2 days of data Y. Faugere High Frequency Content

OSTST Hobart /03/15 jl+psc Cross comparison of Jason-1 and Envisat Impact of SWH selection on HF content 1Hz Data 20Hz Data Legend: High SWH EN High SWH J1 Small SWH EN Small SWH J1 1Hz Envisat and Jason-1 are superimposed in both cases. The noise level increases with the wave height. Moreover a sort of pseudo-plateau is visible on 1Hz spectra at 1Hz only for high waves At 20hz Envisat and Jason-1 spectra are closer for small waves (plateau almost superimposed). The pseudo-plateau visible at 1Hz on high waves is not the signature of a instrumental white noise. It is the signature of the energy between Hz on the 20Hz spectra Y. Faugere

OSTST Hobart /03/15 jl+psc First results on the cross comparison of Jason-1 and Topex RGDR HF content TP MAP TP LSE J1 MLE4 Variance difference of HF content: J1 MLE4 (cycle 20) - TP LSE (Cycle 360) -1cm² 1cm² TP LSE and J1 MLE4 1Hz spectra are very consistent The Geographical distribution of the difference of HF content is not as homogeneous as for Jason-1/Envisat Y. Faugere

OSTST Hobart /03/15 jl+psc Retracking Progress ■Retracked 2 yr TOPEX Alt-B and produced RGDRs with improved orbits  LSE skewness absorbs WF leakages so much reduced N/S Asc/Des (“Quadrant”) difference, but still some  MAP skewness much smaller so large variations with SWH  Need to assess waveform residuals to correction for leakages, OR rely on empirical correction ■Worked issues with CNES on differences of MLE4, LSE, MAP  Processed large set of simulated data, numerous PTRs  Found no anomalies in Jason waveform residuals  However, MLE4 only agrees with LSE when solve for skewness, not fixed skewness. MAP has SWH dependence  Similar results found from simulated WF Rodriguez et al.

OSTST Hobart /03/15 jl+psc TOPEX Waveform Contamination Evidence TOPEX SkewnessJason Skewness Cyc (avg = 0.06) Des Asc Rodriguez et al.

Hobart OSTST Meeting Pierre THIBAUT – March 2007 Page 12 Delta Range(TPX LSE – Jas GDR) versus (SWH and SIG0) 40 cm50 cm  No remaining dependancies with SWH or SIG0 in the bulk of the data  Skewness solved Range_LSE-Range_GDR versus (SWH,SIG0) Skew solved

Hobart OSTST Meeting Pierre THIBAUT – March 2007 Page 13 Delta Range(TPX LSE - Jas GDR) versus (SWH and ATT 2 ) 40 cm50 cm  No remaining dependancies with SWH or ATT 2 in the bulk of the data Range_LSE-Range_GDR versus (SWH,ATT) Skew solved  Skewness solved

Hobart OSTST Meeting Pierre THIBAUT – March 2007 Page 14 Delta Range(TPX LSE – Jas GDR) versus (SWH and SIG0 and ATT2)  Dependances appear when the skewness is fixed but it was fixed to 0 (in GDR 0.1) Range_LSE-Range_GDR versus (SWH,ATT) Skew fixed Range_LSE-Range_GDR versus (SWH,SIG0) Skew fixed 40 cm50 cm 40 cm50 cm

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data Orbit – Range (GSFC orbits) Good global results but some sea state related signals are still there when comparing the quadrants. A SSB estimated globally on Topex cannot remove all the residual sea state dependences Orbit – Range - SSB (GSFC orbits) 5 cm9 cm 5 cm9 cm 5 cm9 cm 5 cm9 cm 1 cm 5 mm Delta(J-TP) The best we can do now S. Labroue

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data Jason SSB (95-131) Both SSB are estimated on a full year of data. Cycles 1-21 are not enough to assess accurately the sea state variations. Topex LSE ( ) -30 cm 0 cm -30 cm 0 cm S. Labroue

OSTST Hobart /03/15 jl+psc Questions ■Do retracking approaches show reduction in SSB? ■What is the approach to aligning TOPEX and Jason data? ■What error model should be used with the corrected data? ■We want to come to agreement today on the reprocessing approach for both TOPEX and Jason-1, so we can go ahead with the full reprocessing this year:  Would like endorsement of proposed approach

OSTST Hobart /03/15 jl+psc Jason-1 Reprocessing ■MLE4 retracking ready  LSE applied on Jason does not differ sensibly from MLE4  Jason MLE4 and Topex LSE are now very consistent: no apparent SWH dependence, similar SSB models ■SSB processing ready, so a new version will be computed as soon as other pieces, e.g., final CNES orbit, is available ■C-band, ionosphere: ready. Additional validation may be performed ■ Orbit, JMR: will be ready this year (-> see other splinters)

OSTST Hobart /03/15 jl+psc TOPEX Reprocessing ■Propose to use LSE retracking algorithm including skewness  Note: skewness does not eliminate all quadrant features.  PTR fitting program (mainly for Alt-A) exists but needs updating ■Needs some additional work  SSB model (requires retracked data, orbit, corrections ) – CNES will fit on RGDR; final RGDR updated with SSB  C-band, ionospheric correction has to be validated  Correction for quadrant effects, 3 options: 1.Add a field with an empirical correction (a+b.SWH) by quadrant, the SSB field being the TOPEX global SSB 2.Add a field with an empirical correction (a+bSWH) by quadrant, the SSB field being the Jason-1 latest SSB model 3.Split the SSB model into quadrant  Splinter had some preference for #1. Endorsement ?  Alt-A SSB from agreement of 1-3 year average ■JPL plans to complete reprocessing within approx 1 yr (may need some extension into next OSTST)

OSTST Hobart /03/15 jl+psc Other Points ■Should investigate the leakages characteristics, as they now become the main source of error in TP/Jason consistency (~1-2cm)  But, proposed approach will correct empirically with quadrant SSB ■MAP algorithm appears not to provide good results on either Jason or TOPEX: small skewness, SWH dependence of height ■Skewness set to 0 in LSE for SWH is there an impact?  Very difficult to solve; inversion tends to be unstable ■Poseidon 1 ?

OSTST Hobart /03/15 jl+psc Backup Material

OSTST Hobart /03/15 jl+psc Method and data used ■Second method: Filtering technique HF(SLA) High-pass filter (20km cut-off) SLA=Orbit-Range-MSS σ [HF(SLA)] in 2°x2° boxes Standard deviation 2007 OSTST meeting Y. Faugere

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data Impact of GSFC orbit New orbits are provided by CNES for Jason-1(GDR ‘B’) and GSFC for TOPEX (RGDR). Using GSFC orbits similar for Jason- 1 and TOPEX, allows us to remove the East/West signal  Even if orbits are best and more homogenous between TOPEX and Jason-1, weak systematic discrepancies remain (< 1cm). -2 cm +2 cm Use of new orbits (GRACE) New SSB, range, orbits Orbit : J1-CNES/TP-GSFC New SSB,New ranges Orbit : J1-GSFC/TP-GSFC

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data – SLA Consistency J1/TP (LSE) Does new retracking methods make SLA of Jason-1 and T/P more consistent? Using Jason-1 GDR ‘B’ cycles SLA without geophysical corrections  LSE range makes SLA of T/P more consistent with J1. SLA differences J1/TP using TP MGDR range MGDR GSFC orbitLSE GSFC orbit -2 cm +2 cm SLA differences J1/TP using TP LSE range

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data – SLA Consistency J1/TP (MAP) SLA differences J1/TP using TP MGDR range [cm] -2 cm +2 cm SLA differences J1/TP using TP MAP range [cm] -2 cm +2 cm MGDR GSFC orbit MAP GSFC orbit Using TP MAP range does not significantly decrease SLA differences between Jason-1 and T/P S. Labroue

OSTST Hobart 2007 – Performance assessment TOPEX/Poseidon data Mean of Topex SSH differences at Xovers: Range impact Using LSE retracking makes T/P ranges more consistent with Jason-1 ranges but residual sea state errors are still present. The errors are quadrant dependent and due to leakages in the TP waveforms. Mean SSH differences at crossoverpoints show hemispheric bias, which increases when using retracked data instead of MGDRs (different impact of the leakages as a function of the sign of the range rate) –Since LSE retrieves 5 parameters instead of 4 (MGDR), noise on altimetric parameters is increased Mean crossovers SSH using LSE & GSFC orbit [cm] -3 cm +3 cm Mean crossovers SSH using MAP & GSFC orbit [cm] -3 cm +3 cm LSE & GSFC orbit MAP & GSFC orbit Mean crossovers SSH using MGDR GSFC orbits [cm] -3 cm +3 cm MGDR GSFC orbit Mean HN : cm HS: 0.68 cm Mean HN : cm HS: 1.07 cm Mean HN : cm HS: 1.37 cm S. Labroue