Graphs, Planar graphs Graph coloring

Slides:



Advertisements
Similar presentations
Mathematical Preliminaries
Advertisements

Drawing trees in a streaming model Carla Binucci Ulrik Brandes Giuseppe Di Battista Walter Didimo Marco Gaertler Pietro Palladino Maurizio Patrignani Antonios.
CSE 211 Discrete Mathematics
CSE 211 Discrete Mathematics and Its Applications
Great Theoretical Ideas in Computer Science
Great Theoretical Ideas in Computer Science for Some.
Graphs, representation, isomorphism, connectivity
KNURE, Software department, Ph , N.V. Bilous Faculty of computer sciences Software department, KNURE An Euler.
Abdollah Khodkar Department of Mathematics University of West Georgia Joint work with Arezoo N. Ghameshlou, University of Tehran.
Trees Chapter 11.
Epp, section 10.? CS 202 Aaron Bloomfield
 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent,
MCA 202: Discrete Mathematics under construction Instructor Neelima Gupta
Introduction to Graphs
9.7 Planar Graphs. Intro problem- 3 houses and 3 utilities K 3,3 problem: Can 3 houses be connected to 3 utilities so that no 2 lines cross? Similarly,
Applications of Euler’s Formula for Graphs Hannah Stevens.
CompSci 102 Discrete Math for Computer Science April 19, 2012 Prof. Rodger Lecture adapted from Bruce Maggs/Lecture developed at Carnegie Mellon, primarily.
Applied Combinatorics, 4th Ed. Alan Tucker
Applied Combinatorics, 4th Ed. Alan Tucker
What is the next line of the proof? a). Let G be a graph with k vertices. b). Assume the theorem holds for all graphs with k+1 vertices. c). Let G be a.
Computational Geometry Seminar Lecture 1
Tucker, Applied Combinatorics, Section 1.4, prepared by Patti Bodkin
Drawing of G. Planar Embedding of G Proposition Proof. 1. Consider a drawing of K 5 or K 3,3 in the plane. Let C be a spanning cycle. 2. If the.
What is the next line of the proof? a). Assume the theorem holds for all graphs with k edges. b). Let G be a graph with k edges. c). Assume the theorem.
MATH 310, FALL 2003 (Combinatorial Problem Solving) Lecture 4, Monday, September 8.
Curve Curve: The image of a continous map from [0,1] to R 2. Polygonal curve: A curve composed of finitely many line segments. Polygonal u,v-curve: A polygonal.
Graph Theory Chapter 6 Planar Graphs Ch. 6. Planar Graphs.
Planar Graphs: Euler's Formula and Coloring Graphs & Algorithms Lecture 7 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
5.2 Trees  A tree is a connected graph without any cycles.
V Spanning Trees Spanning Trees v Minimum Spanning Trees Minimum Spanning Trees v Kruskal’s Algorithm v Example Example v Planar Graphs Planar Graphs v.
MAT 2720 Discrete Mathematics Section 8.7 Planar Graphs
Planar Graphs Graph Coloring
Agenda Review: –Planar Graphs Lecture Content:  Concepts of Trees  Spanning Trees  Binary Trees Exercise.
Unit – V Graph theory. Representation of Graphs Graph G (V, E,  ) V Set of vertices ESet of edges  Function that assigns vertices {v, w} to each edge.
5.8 Graph Matching  Example: Set of worker assign to a set of task  Four tasks are to be assigned to four workers.  – Worker 1 is qualified to do tasks.
Chap. 11 Graph Theory and Applications 1. Directed Graph 2.
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
MAT 2720 Discrete Mathematics Section 8.2 Paths and Cycles
Chapter 9.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 6th ed., by Kenneth H.
Great Theoretical Ideas in Computer Science for Some.
COMPSCI 102 Introduction to Discrete Mathematics.
Chapter 7 Planar Graphs 大葉大學 資訊工程系 黃鈴玲  7.2 Planar Embeddings  7.3 Euler’s Formula and Consequences  7.4 Characterization of Planar Graphs.
Graphs. Representations of graphs : undirected graph An undirected graph G have five vertices and seven edges An adjacency-list representation of G The.
Great Theoretical Ideas In Computer Science
Planar Graphs Hubert Chan (Chapter 9.7) [O2 Proof Techniques]
Outline 1 Properties of Planar Graphs 5/4/2018.
Discrete Mathematics Graph: Planar Graph Yuan Luo
Great Theoretical Ideas In Computer Science
Applied Combinatorics, 4th Ed. Alan Tucker
Graph theory Definitions Trees, cycles, directed graphs.
Tucker, Applied Combinatorics, Sec 2.4
Planarity Testing.
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
Applied Combinatorics, 4th Ed. Alan Tucker
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
MAT 2720 Discrete Mathematics
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 8th ed., by Kenneth H.
N(S) ={vV|uS,{u,v}E(G)}
Gaph Theory Planar Graphs
Discrete Mathematics for Computer Science
GRAPH THEORY Properties of Planar Graphs Ch9-1.
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
Planarity.
Agenda Review Lecture Content: Shortest Path Algorithm
Chapter 10.7 Planar Graphs These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 7th ed., by Kenneth H.
GRAPH THEORY Properties of Planar Graphs Ch9-1.
Presentation transcript:

Graphs, Planar graphs Graph coloring Discrete Math Graphs, Planar graphs Graph coloring 1

Planar graph A graph is called planar if it can be drawn in the plane without any edges crossing. Such a drawing of a graph, with no crossings, is called a planar representation of the graph A crossing is the intersection of the lines or arcs representing the edges at a point other than a common endpoint

Is the graph planar? Can we draw this graph in a plane without any crossings? If so how? a1 e7 e1 a2 e6 a3 e2 e5 e3 e4 a4 a5

Is the graph planar? First move a5 to the left to remove the crossings, This removes crossings e5-e3, e5-e6, e4-e1, e4-e6, e4-e2 a1 e5 a5 e1 e7 e4 e6 a2 a3 e2 e3 a4

Is the graph planar? Then move a4 to the right to remove the remaining crossing e2-e6 a4 e2 a1 e5 a5 e3 e1 e7 e4 e6 a2 a3

Your turn: Is this a planar graph D G C F E B A

Your turn: solution 1 Is this a planar graph A D G C F D G C F E B E B

Your turn: solution 2 Is this a planar graph A D G D G C F E E B B C A

Euler’s formula Theorem: Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar represetnation of G. Then r = e – v + 2 Proof by inductive construction of a sequence of subgraphs. Begin with a single edge, add one more edge each step

Euler’s formula: proof (1) Pick an arbitrary edge of G and the vertices at each end of that arbitrary edge to be our first subgraph G1 Obtain graph Gn from graph Gn-1 by arbitrarily picking an edge incident with a vertex that is part of Gn-1, but is not itself part of Gn-1 and adding it to Gn-1 Adding the vertex at the other end of the edge we just added to Gn-1 to Gn-1

Euler’s formula: proof (2) Now prove by induction BASE CASE: For an arbitrary edge and the vertices it is incident upon e=1 v=2 so r1=1-2+2=1. Cleary the plane is a single region surrounding this graph INDUCTIVE HYPOTHESIS: Euler’s formula rn=en-vn+2 holds for n=p INDUCTIVE STEP: show Euler’s formula holds for n=p+1 , beginning with the inductive hypothesis

Euler’s formula: proof (3) If the selected edge is incident upon a second node that is already a part of Gn. Then the new edge must be inside one of the existing regions The number of edges increases by 1 The number of nodes does not change. The new edge splits one region of the plane into two regions (otherwise lines representing edges would cross. So the number of regions increases by one. en+1-vn+2=en+1-vn+1+2=rn+1

Euler’s formula: proof (3) If the selected edge is incident upon a second node that will be added to Gn. The number of edges increases by 1 The number of nodes increases by 1 No new regions are created en+1-(vn+1)+2=en+1-vn+1+2=rn+1 Using the principle of mathematical induction we have established that Euler’s formula holds

Example Suppose that a connected simple planar graph has 25 vertices and 12 edges of degree 3 and 13 edges of degree 4. How many regions does this graph divide the plane into? The graph has 0.5(4*13+3*12 )=(52+36)/2=88/2=44 edges So 44-25+2=21 regions are created

Corollary If G is a connected planar simple graph with e edges and v vertices, where v≥3, then e ≤3v-6

Corollary If G is a connected planar simple graph, the G has a vertex of degree not exceeding five Proof: If there is one vertex or two vertices. A simple graph will be a vertex or an edge containing two vertices. In both of these cases the degree of the vertices cannot exceed 5. If there are at least 3 vertices, lets prove by contradiction

Corollary (proof continued) If G is a connected planar simple graph, the G has a vertex of degree not exceeding five If there are at least 3 vertices, lets prove by contradiction we know e≤3v-6 from previous corallary. So 2e≤6v-12. Assume the degree of every vertex is at least 6, then by the handshake theorem 2e= deg(v)≥6v . But this contradicts 2e≤6v-12 so there must be a vertex with degree <6

Another corallary In a connected planar simple graph has e edges and v vertices with, v≥3, and no circuits of length 3, then e≤2v-4

Is a graph planar? The corollaries on the previous slide can be used to help prove graphs are not planar. If you have a planar graph and any one of the sets of conditions specified in the corollaries do not hold, then your graph cannot be planar.

Elementary subdivision If a graph is planar, then any subgraph made by replacing an edge (u,v) with a vertex w and two edges (u,w) and (w,v) will also be planar: This operation is called an elementary subdivision IF a graph is planar, then any subgraph made by removing one edge is also planar.

Homeomorphic Given two planar graphs, G and H. H is and G are homeomorphic if both H and G by produced by applying a two series of elementary subdivisions to the same original graph Thus by definition a planar graph is homeomorphic to itself because if you apply and empty sequence of elementary subdivisions to the graph you end up with the same graph

Example Are these graphs homeomorphic G1 = Original graph Homeomorphic to itself G2 Homeomorphic to G1?

Example G1 = Original graph Homeomorphic to itself G2 Homeomorphic to G1? YES

Kuratowski’s Theorem A graph is non planar if and only if it contains a subgraph homeomorphic to K3,3 or K5 Remember K3,3 is the complete bipartite graph with 3 vertices in each set Remember K5 is the complete graph with 5 vertices

Maps If we think of a map we think of a series of areas on a page that represent countries, provinces, etc We can think of a map as a graph.The edges of the graph are the boundaries between the countries. The nodes of the graph are either on bondaries between contries or at points where more than 2 countries touch.

Dual graph We can also represent a map by a dual graph Each region of the map is represented by a vertex When two regions share a boundary of more than one point, the vertices representing those regions are connected by edges in the dual graph The dual graph of a map must be a planar graph

Maps and coloring A planar graph divides the plane into regions Those regions can be though of as “countries” on a map. Customarily when we draw a map we want to color adjacent countries different colors so it is each to see where the borders (edges) are What is the minimum number of colors we need to color the map?

Example A B A B E C E D C D

Your turn: solution Construct the dual graph B D C E A F G

Your turn: solution G D G A B A B E D E C F C F

Coloring A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color. Clearly each graph can be colored by assigning a different color to each vertex For many graphs the graph can be colored using fewer colors than the number of vertices

Chromatic number The chromatic number of a graph is the least number of colors needed for a coloring of that graph. The chromatic number of a graph G is denoted χ(G).

The four color theorem The chromatic number of a planar graph is no greater than four First proved 1879, Kempe Proof shown invalid 1890, Heawood Proved again (similar argument) Appell and Haken 1976 Used a computer to exhaustively prove for about 2000 cases

What are the chromatic numbers K3,3 K5

What are the chromatic numbers K3,3 K5 35