Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.4 Original citation: Dougherty, C. (2012) EC220 - Introduction.

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

EC220 - Introduction to econometrics (chapter 1)
EC220 - Introduction to econometrics (chapter 13)
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the central limit theorem Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original.
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.10 and r.12 Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.13 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
EXERCISE R.7 R.7*Find E(X 2 ) for X defined in Exercise R.2. [R.2*A random variable X is defined to be the larger of the numbers when two dice are thrown,
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.19 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: the use of simulation Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a random variable Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: population variance of a discreet random variable Original citation:
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 10)
EC220 - Introduction to econometrics (chapter 4)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: exercise 6.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 7) Slideshow: exercise 7.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (review chapter)
EXERCISE R.4 1 R.4*Find the expected value of X in Exercise R.2. [R.2*A random variable X is defined to be the larger of the numbers when two dice are.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.9 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.24 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.11 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.4 Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (review chapter). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

EXERCISE R.4 1 R.4*Find the expected value of X in Exercise R.2. [R.2*A random variable X is defined to be the larger of the numbers when two dice are thrown, or the number if they are the same. Find the probability distribution for X.]

Definition of E(X), the expected value of X: 2 The expected value of a random variable, also known as its population mean, is the weighted average of its possible values, the weights being the probabilities attached to the values. EXERCISE R.4

The left side of the table above shows in abstract how an expected value should be calculated. x i p i x 1 p 1 x 2 p 2 x 3 p x n p n  x i p i = E(X) 3

EXERCISE R.4 The random variable X defined in Exercise R.2 could be any of the integers from 1 to 6 with probabilities as shown. x i p i x i p i x i p i x 1 p 1 x 1 p 1 11/36 x 2 p 2 x 2 p 2 23/36 x 3 p 3 x 3 p 3 35/ / /36 x n p n x n p n 611/36  x i p i = E(X) 4

EXERCISE R.4 Before calculating the expected value, it is a good idea to make an initial guess. The higher values of X have the greatest probabilities, so the expected value is likely to be between 4 and 5. x i p i x i p i x i p i x 1 p 1 x 1 p 1 11/36 x 2 p 2 x 2 p 2 23/36 x 3 p 3 x 3 p 3 35/ / /36 x n p n x n p n 611/36  x i p i = E(X) 5

EXERCISE R.4 X could be equal to 1 with probability 1/36, so the first entry in the calculation of the expected value is 1/36. x i p i x i p i x 1 p 1 x 1 p 1 11/361/36 x 2 p 2 x 2 p 2 23/36 x 3 p 3 x 3 p 3 35/ / /36 x n p n x n p n 611/36  x i p i = E(X) 6

EXERCISE R.4 Similarly for the other 5 possible values. x i p i x i p i x 1 p 1 x 1 p 1 11/361/36 x 2 p 2 x 2 p 2 23/366/36 x 3 p 3 x 3 p 3 35/3615/ /3628/ /3645/36 x n p n x n p n 611/3666/36  x i p i = E(X) 7

EXERCISE R.4 To obtain the expected value, we sum the entries in this column. x i p i x i p i x 1 p 1 x 1 p 1 11/361/36 x 2 p 2 x 2 p 2 23/366/36 x 3 p 3 x 3 p 3 35/3615/ /3628/ /3645/36 x n p n x n p n 611/3666/36  x i p i = E(X) 161/36 8

x i p i x i p i x 1 p 1 x 1 p 1 11/361/36 x 2 p 2 x 2 p 2 23/366/36 x 3 p 3 x 3 p 3 35/3615/ /3628/ /3645/36 x n p n x n p n 611/3666/36  x i p i = E(X) 161/36 = 4.47 The expected value turns out to be 4.47, which is in line with our initial guess. EXERCISE R.4 9

Copyright Christopher Dougherty 1999–2006. This slideshow may be freely copied for personal use