Chapter 2-3. States and carrier distributions

Slides:



Advertisements
Similar presentations
ECSE-6230 Semiconductor Devices and Models I Lecture 4
Advertisements

Chapter 2-1. Semiconductor models
Chapter 2-4. Equilibrium carrier concentrations
Supplement 1 - Semiconductor Physics Review - Outline
APPLIED PHYSICS CODE : 07A1BS05 I B.TECH CSE, IT, ECE & EEE UNIT-3
Free Electron Fermi Gas
1 Chapter 5-1. PN-junction electrostatics You will also learn about: Poisson’s Equation Built-In Potential Depletion Approximation Step-Junction Solution.
EE130/230A Discussion 2 Peng Zheng.
Semiconductor Device Physics
Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
LECTURE 2 CONTENTS MAXWELL BOLTZMANN STATISTICS
Homogeneous Semiconductors
GOAL: The density of electrons (n o ) can be found precisely if we know 1. the number of allowed energy states in a small energy range, dE: S(E)dE “the.
Semiconductor Device Physics Lecture 3 Dr. Gaurav Trivedi, EEE Department, IIT Guwahati.
The Semiconductor in Equilibrium (A key chapter in this course)
Semiconductor Device Physics
Energy Band View of Semiconductors Conductors, semiconductors, insulators: Why is it that when individual atoms get close together to form a solid – such.
CHAPTER 3 Introduction to the Quantum Theory of Solids
P461 - Semiconductors1 Semiconductors Filled valence band but small gap (~1 eV) to an empty (at T=0) conduction band look at density of states D and distribution.
Physics for Scientists and Engineers, 6e Chapter 43 - Molecules and Solids.
CHAPTER 3 CARRIER CONCENTRATIONS IN SEMICONDUCTORS
Read: Chapter 2 (Section 2.4)
Fermi-Dirac distribution and the Fermi-level
SEMICONDUCTOR PHYSICS. BAND THEORY OF SOLIDS  Ge and Si are pure semiconductors  Electronic configuration of Si is  1S 2, 2S 2, 2P 6, 3S 2, 3P 2.
Electron And Hole Equilibrium Concentrations 18 and 20 February 2015  Chapter 4 Topics-Two burning questions: What is the density of states in the conduction.
States and state filling
EXAMPLE 3.1 OBJECTIVE Solution Comment
Electron And Hole Equilibrium Concentrations 24 February 2014  Return and discuss Quiz 2  Chapter 4 Topics-Two burning questions: What is the density.
Energy bands semiconductors
Chapter 6: Free Electron Fermi Gas
Electron & Hole Statistics in Semiconductors More Details
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapter 2: Carrier Modeling Goal: To understand what.
Semiconductor Equilibrium
Chapter 5 Junctions. 5.1 Introduction (chapter 3) 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at.
Density of States and Fermi Energy Concepts
Numericals on semiconductors
Carrier Concentration in Equilibrium.  Since current (electron and hole flow) is dependent on the concentration of electrons and holes in the material,
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
EEE 3394 Electronic Materials
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d) – Thermal equilibrium – Fermi-Dirac distribution Boltzmann approximation – Relationship between E.
Electron & Hole Statistics in Semiconductors A “Short Course”. BW, Ch
BASICS OF SEMICONDUCTOR
1 Prof. Ming-Jer Chen Department of Electronics Engineering National Chiao-Tung University September 18, 2014 DEE4521 Semiconductor Device Physics Lecture.
EXAMPLE 2.2 OBJECTIVE Solution Comment
1 Prof. Ming-Jer Chen Department of Electronics Engineering National Chiao-Tung University October 1, 2012 DEE4521 Semiconductor Device Physics Lecture.
President UniversityErwin SitompulSDP 2/1 Dr.-Ing. Erwin Sitompul President University Lecture 2 Semiconductor Device Physics
President UniversityErwin SitompulSDP 3/1 Dr.-Ing. Erwin Sitompul President University Lecture 3 Semiconductor Device Physics
Density of States (Appendix D) Energy Distribution Functions (Section 2.9) Carrier Concentrations (Sections ) ECE G201.
Manipulation of Carrier Numbers – Doping
Solid-State Electronics Chap. 4 Instructor: Pei-Wen Li Dept. of E. E. NCU 1 Chap 4. Semiconductor in Equilibrium  Carriers in Semiconductors  Dopant.
Homogeneous Semiconductors
EEE209/ECE230 Semiconductor Devices and Materials
Conductivity, Energy Bands and Charge Carriers in Semiconductors
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Manipulation of Carrier Numbers – Doping
Conduction of Electricity in Solids
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Materials Considerations in Semiconductor Detectors–II
Equilibrium carrier concentrations
Manipulation of Carrier Numbers – Doping
Equilibrium Carrier Statistics

Read: Chapter 2 (Section 2.2)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Density of States (DOS)
Energy Band Diagram (revision)
ECE 340 Lecture 6 Intrinsic Material, Doping, Carrier Concentrations
Density of States (DOS)
In term of energy bands model, semiconductors can defined as that
Density of States (DOS)
Presentation transcript:

Chapter 2-3. States and carrier distributions You should have read pages 40 – 49 For next class, read pages 49 – 57 So far we have concentrated on carrier properties of qualitative nature. We also need to: Determine the carrier distribution with respect to energy in different bands. Determine the quantitative information of carrier concentrations in different bands. Two concepts will be introduced to determine this: Density of states Fermi-Dirac distribution and Fermi-Level

Density of states There are 4 states per atom or 4 51022 / cm3 states in each of conduction and valence bands of Si. The distribution of these states in the bands are not uniform, but follows a distribution function given by the following equations.

Dependence of DOS near band edges

More on density of states (DOS) gc(E) dE represents the # of conduction band states/cm3 lying in the energy range between E and E + dE gv(E) dE represents the # of valence band states/cm3 lying in the energy range between E and E + dE More states are available available away from the band edges, similar to a seating arrangement in a football field Units for gc(E) and gv (E): # per unit volume per unit energy, i.e., # / (cm3 eV) Energy bands are drawn with respect to electron energies

Some examples Calculate the density of states per cm3 that lie between the energies EC and EC+1eV. To calculate this, you have to integrate the equation between EC and EC+1eV. If you integrate from Ec, bottom to Ec, top, what should you get?

Fermi-Dirac distribution and the Fermi-level Density of states tells us how many states exist at a given energy E. The Fermi function f(E) specifies how many of the existing states at the energy E will be filled with electrons. The function f(E) specifies, under equilibrium conditions, the probability that an available state at an energy E will be occupied by an electron. It is a probability distribution function. EF = Fermi energy or Fermi level k = Boltzmann constant = 1.38 1023 J/K = 8.6  105 eV/K T = absolute temperature in K

Distribution function for gas molecules Example: Gas molecules follow a different distribution function: The Maxwell-Boltzmann distribution Let us look at the Fermi-Dirac distribution more closely.

Fermi-Dirac distribution: Consider T  0 K For E > EF : For E < EF : E EF 0 1 f(E)

Fermi-Dirac distribution: Consider T > 0 K If E = EF then f(EF) = ½ If then Thus the following approximation is valid: i.e., most states at energies 3kT above EF are empty. If then So, 1f(E) = Probability that a state is empty, decays to zero. So, most states will be filled. kT (at 300 K) = 0.025eV, Eg(Si) = 1.1eV, so 3kT is very small in comparison.

Temperature dependence of Fermi-Dirac distribution

Exercise 2.3

Example Assume that the density of states is the same in the conduction band (CB) and valence band (VB). Then, the probability that a state is filled at the conduction band edge (EC) is equal to the probability that a state is empty at the valence band edge. Where is the Fermi level located? This corresponds to intrinsic material, where the # of electrons at EC = # of holes (empty states) at EV. Note that the probability within the band gap is finite, but there are no states available, so electrons cannot be found there.

Equilibrium distribution of carriers Distribution of carriers = DOS probability of occupancy = g(E) f(E) (where DOS = Density of states) Total number of electrons in CB (conduction band) = Total number of holes in VB (valence band) =

Fermi-level positioning and carrier distributions

Visualization of carrier distribution One way to convey the carrier distribution is to draw the following diagram. This diagram represents n-type material since there are more electrons than holes.

Visualization of carrier distribution (continued) Another more useful way to convey the carrier distribution is to draw the following band diagrams. The position of EF with respect to Ei is used to indicate whether is n-type, p-type or intrinsic.