Disks around young Brown Dwarfs as critical testbeds for models of dust evolution: an investigation with ALMA Luca Ricci (CARMA Fellow, Caltech) Testi.

Slides:



Advertisements
Similar presentations
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 116.
Advertisements

1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 107.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 40.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 28.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 75.
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Proto-Planetary Disk and Planetary Formation
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
The Nature of Transition Disks in Perseus, Taurus and Auriga Lucas Cieza 1, Matthias Schreiber 2, Gisela Romero 2, Jonathan Williams 1 Alberto Rebassa-Mansergas.
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
Chemistry and Dynamics in Protoplanetary Disks
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Dust Growth in Transitional Disks Paola Pinilla PhD student Heidelberg University ZAH/ITA 1st ITA-MPIA/Heidelberg-IPAG Colloquium "Signs of planetary formation.
Disks around young Brown Dwarfs as critical testbeds for models of dust evolution: an investigation with ALMA Luca Ricci (CARMA Fellow, Caltech) Testi.
Observing How Habitable Conditions Develop (Or Not) in Protoplanetary Disks Colette Salyk National Optical Astronomy Observatory Credit: JPL-Caltech/T.
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Low-J CO Line Emission at High Redshift with ALMA Band 2 Leslie Hunt INAF-Osservatorio Astrofisico di Arcetri Firenze, Italy.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Jérémy Lebreton EXOZODI Kick-off Meeting
Fu Jian Max Planck Institute for Astrophysics, Garching 18/12/
15. Oktober Oktober Oktober 2012.
Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes Accretion of Planets Bill Hartmann.
1 Concluding Panel Al Glassgold Sienny Shang Jonathan Williams David Wilner.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Ge/Ay133 How do small dust grains grow in protoplanetary disks?
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
Processes in Protoplanetary Disks
Exo-planets: ground-based How common are giant planets? What is the distribution of their orbits? –3.6m HARPS: long-term radial velocity monitoring of.
A New “Radio Era” for Planet Forming Disks K. Teramura UH IfA David J. Wilner Harvard-Smithsonian Center for Astrophysics thanks to S. Andrews, C. Qi,
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Peering into the Birthplaces of Solar Systems Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Next Gen VLA Observations of Protoplanetary Disks A. Meredith Hughes Wesleyan University ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
Protoplanetary and Debris Disks A. Meredith Hughes Wesleyan University.
Grain Shattering and Coagulation in Interstellar Medium Hiroyuki Hirashita (ASIAA, Taiwan) Huirong Yan (Univ. of Arizona) Kazu Omukai (NAOJ)
THE SPATIAL DISTRIBUTION OF LARGE AND SMALL DUST GRAINS IN TRANSITIONAL DISKS ELIZABETH GUTIERREZ VILLANOVA UNIVERSITY 2015 SOCORRO COHORT STUDENT ADVISOR:
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
Star and Planet Formation
Deuterium-Bearing Molecules in Dense Cores
Young planetary systems
ALMA does Circumstellar Disks
9-10 Aprile Osservatorio Astronomico di Capodimonte
Bell Ringer What is the order of the planets?
Probing CO freeze-out and desorption in protoplanetary disks
Some considerations on disk models
Dust Evolution & Planet Traps: Effects on Planet Populations
Spiral density waves in a young protoplanetary disk
Presentation transcript:

Disks around young Brown Dwarfs as critical testbeds for models of dust evolution: an investigation with ALMA Luca Ricci (CARMA Fellow, Caltech) Testi (ESO/Germany), Natta, Scholz (DIAS), de Gregorio-Monsalvo (ESO/Chile) Isella, Carpenter (Caltech), Pinilla (ITA), Birnstiel (LMU) ALMA (ESO/NAOJ/NRAO)/Kornmesser, Calcada (ESO)

From dust to planets NASA/ESA, L. Ricci Dullemond

From dust to planets NASA/ESA, L. Ricci Dullemond

From dust to planetesimals mm-grains with low sticking efficiency mm-grains drift fast toward the central star dP gas / dr > 0 : Reverse motion of solids, trapped at P-maxima dP gas / dr < 0 : V gas < V solids 1mm

Grain sizing from mm-SED slope F ν ~ ν 2 κ ν ; F ν ~ ν α, κ ν ~ ν β α ~ 2 + β Dullemond, Birnstiel RJ tail

Grain sizing from mm-SED slope F ν ~ ν 2 κ ν ; F ν ~ ν α, κ ν ~ ν β α ~ 2 + β Draine 06 β < 1 (α < 3) only if ~ mm pebbles in the outer disk (R > 10 AU) β~1.7 β~0.5 Dullemond, Birnstiel RJ tail

Ricci Ricci Grain growth: observational results ~ 100 Class II disks around young stars - mm-grains in the outer regions of nearly all disks: grain growth is fast even in the outer disk, i.e. < 1 Myr (Beckwith & Sargent 91, Testi+ 03, Wilner+ 05, Andrews & Williams 05, Rodmann+ 06, Lommen+ 07, Ricci+ 10a,10b,11,12, Guilloteau+ 11, Ubach+12, …)

Models of dust evolution in disks - Time evolution of gas surface density & temperature - Solids with different sizes acquire relative velocities, i.e. they collide Collision outcome: Δv coll fragmentation coagulation > v frag < v frag Rotation Brauer+ 08, Birnstiel+ 10

Models of dust evolution in disks Solid size Distance from the star Disk structure ( Σ d (r), T(r) ) Birnstiel Disk Fluxes (dist, incl) Dust composition (e.g. Pollack+ 94) κ λ (r)

Data vs models: the role of drift “SMOOTH” DISK, SELF-SIMILAR Σ gas (R) Pinilla, LR , Birnstiel, LR

Data vs models: the role of drift Pinilla, LR , Birnstiel, LR PRESSURE MAXIMA (A≈0.3Σ 0, l≈H p ) “SMOOTH” DISK, SELF-SIMILAR Σ gas (R) :)

Disks with P-maxima 3D MHD simulations of MRI-turbulent disks (Uribe+ 2011) (are the required physical conditions met in real disks? stability?) If there, ALMA should see them… (Pinilla, LR+ 2012)

Disks with P-maxima: model predictions T Tauri disks BD disks?

Disks with P-maxima: model predictions BD disks? T Tauri disks (Pinilla,LR+ 13, submitted) less coag. to mm faster radial drift

ALMA Disks with P-maxima: model predictions T Tauri disks 4 disks with 1 < F 1mm < 10 mJy around BDs and VLMs

Rho Oph 102 M BD ≈ 60 M Jup, Age ~ 1 Myr Rho Oph 102 ESO/Digitized Sky Survey 2

The disk around the young BD rho Oph 102 ALMA 0.89mm ALMA 3.2mm α rms = 0.04 mJy rms = 0.3 mJy ALMA 0.89mm ALMA 3.2mm Ricci + 12

The disk around the young BD rho Oph 102 ALMA 0.89mm ALMA 3.2mm rms = 0.04 mJy/b rms = 0.3 mJy/b ~ 30 min ALMA time ~ 15 min ALMA time Ricci + 12

The disk around the young BD rho Oph 102 ~ 15 min ALMA time ~ 30 min ALMA time vs ~ 500 hrs SMA time! vs ~ 120 hrs CARMA time! ALMA 0.89mm ALMA 3.2mm Ricci + 12 rms = 0.3 mJy/b rms = 0.04 mJy/b

The disk around the young BD rho Oph 102 CO (J = 3 - 2) Cold Molecular gas from the disk ALMA 0.89mm ALMA 3.2mm rms = 0.04 mJy rms = 0.3 mJy ALMA 0.89mm ALMA 3.2mm gas-rich disk as in T Tauri disks Ricci + 12

2M FCRAO, G. Narayanan / M. Heyer M BD ≈ 50 M Jup, Age ~ 1 Myr 2M0444

The disk around the young BD 2M0444 α ALMA 0.89mm ALMA 3.2mm rms = 0.02 mJy/b rms = 0.4 mJy/b Ricci + 13b, in prep

The disk around the young BD 2M0444 CO (J = 3 - 2) 4 km/s 7 km/s 5 km/s 6 km/s 9 km/s 8 km/s Gas in rotation around the BD Moment 1 Ricci + 13b, in prep

The disk around the young BD 2M0444 Ricci + 13a θ ≈ 0.15 arcsec, 10 AU in R R > 10 AU CARMA 1.3mm Visibility vs Baseline Dust optically thin: α ~ 2 + β

ALMA Disks with P-maxima: model predictions T Tauri disks

Disks with P-maxima: model predictions T Tauri disks rho Oph 102 Grain growth even in the outer regions of BD disks CIDA-1 CFHT-4

Grain growth in BD disks: possible solution Pinilla, LR + 13, submitted - Disk outer radii ~ 15 – 30 AU - Low turbulent velocities α < Strong pressure bumps (see also F. Meru’s poster)

Grain growth in BD disks: possible solution - Disk outer radii ~ 15 – 30 AU - Low turbulent velocities α < Strong pressure bumps θ ~ 0.2 – 0.4’’ Modeling of molecular lines B > 10 km Pinilla, LR + 13, submitted (see Dartois+03 Hughes+ 11, Guilloteau+ 12) (see also F. Meru’s poster)

Take away messages - Grain growth to mm-sizes is fast (< 1 Myr) in both T Tauri and BD disks - Dust trapping to explain mm-data of disks, ALMA should see the traps [trapping in transitional disks is from the P bump in the inner disk, here we are invoking trapping in the outer regions of primordial disks] - BD disks to test dust evolution models - We started to probe dust properties and CO in BD disks: more to come in ALMA-Cycle 1 [see also Van der Plas poster] [see Perez review talk on radial variation of β]