FU Ori and Outburst Mechanisms Zhaohuan Zhu Hubble Fellow, Princeton University Collaborators: Lee Hartmann (Umich), Charles Gammie (UIUC), Nuria Calvet.

Slides:



Advertisements
Similar presentations
AGN Feedback at the Parsec Scale Feng Yuan Shanghai Astronomical Observatory, CAS with: F. G. Xie (SHAO) J. P. Ostriker (Princeton University) M. Li (SHAO)
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Accretion and Variability in T Tauri Disks James Muzerolle.
Disk Structure and Evolution (the so-called model of disk viscosity) Ge/Ay 133.
Proto-Planetary Disk and Planetary Formation
Dust emission from Haebes: Disks and Envelopes A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK) ApJ 475, L41 (1997;
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Protostellar/planetary disk observations (and what they might imply) Lee Hartmann University of Michigan.
An accretion disk-corona model for X-ray spectra of active galactic nuclei Xinwu Cao Shanghai Astronomical Observatory.
From protostellar cores to disk galaxies - Zurich - 09/2007 S.Walch, A.Burkert, T.Naab Munich University Observatory S.Walch, A.Burkert, T.Naab Munich.
Accretion Processes in Star Formation Lee Hartmann Cambridge Astrophysics Series, 32 Cambridge University Press (also from Nuria Calvet talks (2004) (continued)
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
Global Magnetohydrodynamic Simulations of State Transitions in Black Hole Candidates Ryoji Matsumoto (Chiba Univ.) Collaborators: Takayuki Ogawa, Tomohisa.
Planet Formation Topic: Disk thermal structure Lecture by: C.P. Dullemond.
Dust Growth in Transitional Disks Paola Pinilla PhD student Heidelberg University ZAH/ITA 1st ITA-MPIA/Heidelberg-IPAG Colloquium "Signs of planetary formation.
Accretion Disks Prof. Hannah Jang-Condell. Accretion Disks Galaxy: M81 Protoplanetary Disk: AB Aurigae Neutron Star (artists conception) (Giovanni Benintende)(M.
Angular Momentum and the Formation of Stars and Black Holes
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Jérémy Lebreton EXOZODI Kick-off Meeting
Origins of Regular and Irregular Satellites ASTR5830 March 19, :30-1:45 pm.
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
Planet Formation Topic: Formation of gas giant planets Lecture by: C.P. Dullemond.
1 Current targets Slavek Rucinski & Michael Siwak Halifax 2010.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Variability of young stars with LSST Gregory J. Herczeg KIAA.
The formation of stars and planets Day 3, Topic 2: Viscous accretion disks Continued... Lecture by: C.P. Dullemond.
Models of Turbulent Angular Momentum Transport Beyond the  Parameterization Martin Pessah Institute for Advanced Study Workshop on Saturation and Transport.
Results from the Keck Interferometer Commissioning YSO Project Rafael Millan-Gabet Caltech/Michelson Science Center Collaboration: PIs: John Monnier (U.
The Nature of Turbulence in Protoplanetary Disks Jeremy Goodman Princeton University “Astrophysics of Planetary Systems” Harvard.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Planet Driven Disk Evolution Roman Rafikov IAS. Outline Introduction - Planet-disk interaction - Basics of the density wave theory Density waves as drivers.
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
J. Cuadra – Accretion of Stellar Winds in the Galactic Centre – IAU General Assembly – Prague – p. 1 Accretion of Stellar Winds in the Galactic Centre.
1 Indiana 3D Hydro Group The Effects of Envelope Irradiation on Gravitational Instabilities in Embedded Protoplanetary Disks Kai Cai Astronomy Department.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Variability of radio-quiet AGN across the spectrum: facts and ideas B. Czerny Copernicus Astronomical Center, Warsaw, Poland.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
References Bell, R. & Lin, D. N. C., 1994, ApJ, 427, 987 Bertin, G., Coppi, B., Rousseau, F., 2005, APS, 47 th Annual Meeting of the Division of Plasma.
Time-Dependent Phenomena in Protoplanetary Disks
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Long term evolution of circumstellar discs: DM Tau and GM Aur Ricardo Hueso (*) & Tristan Guillot Laboratoire Cassini, Observatoire de la Côte d’Azur,
Kenneth Wood St Andrews
ALMA Observations of proto-planetary disks I HD – P.I. Casassus 2013 Nature 493, 191 Herbig Ae star 140 pc, 2 Myr, 1.9 M , disk mass 0.1 M  Left:
The University of Western Ontario Shantanu Basu and Eduard Vorobyov Cores to Disks to Protostars: The Effect of the Core Envelope on Accretion and Disk.
Planetesimal dynamics in self-gravitating discs Giuseppe Lodato IoA - Cambridge.
AS 4002 Star Formation & Plasma Astrophysics Steady thin discs Suppose changes in external conditions are slower than t visc ~R 2 /. Set ∂/∂t=0 and integrate.
Accretion onto Black Hole : Advection Dominated Flow
Young Stellar Objects: The Inner AU John D. Monnier University of Michigan Art Credit: Luis Belerique Collaborators Ajay Tannirkulam (UM)Rafael Millan-Gabet.
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Massive planets in FU Orionis objects Giuseppe Lodato Institute of Astronomy, Cambridge In collaboration with Cathie Clarke (IoA)
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
Planet and Gaps in the disk
Orbital Evolution of Dust Grains and Rocks During FU Orionis Outbursts
Deuterium-Bearing Molecules in Dense Cores
Some considerations on disk models
Planetesimal formation in self-gravitating accretion discs
Eduard Vorobyov and Shantanu Basu
Changes in the YSO FU Ori Disk
Wladimir Lyra California State University, Northridge
Can Giant Planet Form by Direct Gravitational Instability?
Mayer et al Viability of Giant Planet Formation by Direct Gravitational Instability Roman Rafikov (CITA)
Two puzzles of FU Ori objects
Presentation transcript:

FU Ori and Outburst Mechanisms Zhaohuan Zhu Hubble Fellow, Princeton University Collaborators: Lee Hartmann (Umich), Charles Gammie (UIUC), Nuria Calvet (Umich), Jonathan McKinney (UMD), Jaehan Bae (Umich)

Outlines FU Ori observations -High accretion rate inner disks Outburst mechanisms -MRI+GI -Disk fragmentation R*R*

FU Ori FU Orionis objects Light from disk accretion Star Boundary layer Disk λ F Class I/II

FU Ori F,G K,M High mass accretion disk Constant dM/dt inner disk What can we learn from SED? Spectral type: Luminosity : Zhu et al Double peaked absorption lines: Hartmann & Kenyon 1985, 1987 Kenyon, Hartmann & Hewett 1988

FU Ori: Hot inner disk (Zhu et al 2007, 2008) Tools: Disk atmospheric radiative transfer model (Disk structure + Kurucz model)

FU Ori: Hot inner disk (Zhu et al 2007, 2008) Disk atmospheric radiative transfer modeling: Steady accretion model fits SED The hot inner disk extends from 5 R  to AU Decay timescale: t visc ~R 2 /ν  ~ No hot boundary layer emission High mass accretion disk T=6000 K Flared outer disk (silicate emission) AU Log λ (μm) Independent constraints on hot FU Ori disk size (5 R  to AU): MOST satellite suggests short small scale variability ~ days, corresponding to the orbital time at R  (Siwak et al. 2013) Keck Interferometer spatially resolve FU Ori to sub-AU scale, constraining the hot disk size ~0.5 AU (Eisner & Hillenbrand 2011)

(Zhu et al b) 5 µm optical 2 µm Keplerian rotation disk The high Ṁ disk could extend to 0.5 AU FU Ori: Keplerian rotation Central star mass 0.3 M ʘ Produced at ~0.5 AU

1)FU Ori is a high mass accretion rate disk (2x10 -4 M ʘ yr -1 ) from 5 R  to AU around a 0.3 M  star 2) Outbursts last ~100 yrs=>0.02 Msun t visc ~R 2 /ν = decay time α= ) Keplerian rotation disk Observation summary:

Disk accretion mechanisms (MRI & GI): MRIGI (Gammie 1996, Turner et al. 2007, Bai & Goodman 2009) GI can transport angular momentum (Gammie 2001, Durisen et al. 2007) ~1 MRI GI High ionization ratio Toomre Q~1  t cool >Ωt cool <Ω

Log T eff Log Σ S curve can be due to various reasons 1)Hydrogen ionization-``Thermal Instability’’ successful for CV objects, proposed for FU Ori (Bell & Lin 1994) But the outburst radius is ~0.1 AU 2) Different accretion mechanisms at different Σ and T. `S’ curve determines the outburst Heating>cooling Heating<cooling Outburst and ‘S’ curve:

(Zhu et al. 2009a, 2010b) Disk unstable regions: (1)At M>3x10 -5 M ʘ /yr may be subject to thermal instability (2) At M<3x10 -5 M ʘ /yr Non-steady (outbursts) GI pileup->dissipation->MRI (3) At M>10 -6 M ʘ /yr, R>100 AU Gravitationally fragmentation (Rafikov 2007, 2009)...

Outburst mechanisms 1) Accretion of Clumps generated by GI Vorobyov & Basu 2005, 2006, ) Thermal instability Bell & Lin 1994, Lodato & Clarke 2004

GI (Armitage et al. 2001, Zhu, Hartmann, Gammie 2009 a,c) Outburst mechanism: MRI+GI instability 3) MRI+GI (Martin & Lubow 2011)

Axisymmetric viscous fluid where the viscosity parameter (α) of MRI and GI α= α MRI if T>T MRI or  A =100 g/cm 2 α=exp(-Q 2 ) the radiative transfer MRI+GI instability: 2D R-Z simulation Toomre Q

– Maximum mass accretion rate – Outburst duration time – High Ṁ disk size (Zhu et al. 2009c) dM/dt MRI+GI instability: 2D R-Z simulation B 2x10 -4 M ʘ yr -1

MRI+GI instability: 2D R-Z simulation Due to Thermal instability The midplane temperature is 10 5 K Hartmann, Zhu & Calvet 2010

(Bae et al. In prep.) MRI+GI instability: 2D R-Φ simulation

(Bae et al in prep.) MRI+GI instability: 2D R-Φ simulation

Disk Fragmentation:

Disk fragmentation: (Zhu et al. 2012)

Disks fragment under certain conditions:

Clumps could have different fates: Tidal destruction: Gap opening: (Zhu et al. 2012) Boley 2009 Nayakshin 2010

How to test various theories? The synthetic ALMA image for a fragmenting disk. 1 minute integration with Full ALMA with 0.1” resolution Accepted ALMA proposal for Cycle 2 (PI: Lucas Cieza): 3 FU Orionis objects and 5 Exor objects

FU Ori is a high mass accretion rate disk (2x10 -4 M ʘ yr -1 ) from 5 R  to AU around a 0.3 M  star. MRI-GI can explain the outbursts. Disk fragments under certain conditions. Clumps could have different fates. Summary: R*R*