Pseudorandom Walks: Looking Random in The Long Run or All The Way? Omer Reingold Weizmann Institute.

Slides:



Advertisements
Similar presentations
The Weizmann Institute
Advertisements

Walk the Walk: On Pseudorandomness, Expansion, and Connectivity Omer Reingold Weizmann Institute Based on join works with Michael Capalbo, Kai-Min Chung,
Undirected ST-Connectivity in Log-Space Omer Reingold Weizmann Institute.
Routing Complexity of Faulty Networks Omer Angel Itai Benjamini Eran Ofek Udi Wieder The Weizmann Institute of Science.
Lower Bounds for Additive Spanners, Emulators, and More David P. Woodruff MIT and Tsinghua University To appear in FOCS, 2006.
PRG for Low Degree Polynomials from AG-Codes Gil Cohen Joint work with Amnon Ta-Shma.
An Introduction to Randomness Extractors Ronen Shaltiel University of Haifa Daddy, how do computers get random bits?
Pseudorandomness from Shrinkage David Zuckerman University of Texas at Austin Joint with Russell Impagliazzo and Raghu Meka.
Linear-Degree Extractors and the Inapproximability of Max Clique and Chromatic Number David Zuckerman University of Texas at Austin.
A Combinatorial Construction of Almost-Ramanujan Graphs Using the Zig-Zag product Avraham Ben-Aroya Avraham Ben-Aroya Amnon Ta-Shma Amnon Ta-Shma Tel-Aviv.
Models of Computation Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Analysis of Algorithms Week 1, Lecture 2.
Randomness Extractors: Motivation, Applications and Constructions Ronen Shaltiel University of Haifa.
Algorithms (and Datastructures) Lecture 3 MAS 714 part 2 Hartmut Klauck.
Pseudorandomness from Shrinkage David Zuckerman University of Texas at Austin Joint with Russell Impagliazzo and Raghu Meka.
Talk for Topics course. Pseudo-Random Generators pseudo-random bits PRG seed Use a short “ seed ” of very few truly random bits to generate a long string.
Simple extractors for all min- entropies and a new pseudo- random generator Ronen Shaltiel Chris Umans.
Uniform Hardness vs. Randomness Tradeoffs for Arthur-Merlin Games. Danny Gutfreund, Hebrew U. Ronen Shaltiel, Weizmann Inst. Amnon Ta-Shma, Tel-Aviv U.
CS 253: Algorithms Chapter 22 Graphs Credit: Dr. George Bebis.
Time vs Randomness a GITCS presentation February 13, 2012.
Amnon Ta-Shma Uri Zwick Tel Aviv University Deterministic Rendezvous, Treasure Hunts and Strongly Universal Exploration Sequences TexPoint fonts used in.
(Omer Reingold, 2005) Speaker: Roii Werner TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A A A AA A.
Undirected ST-Connectivity in Log-Space Author: Omer Reingold Presented by: Yang Liu.
Some Thoughts regarding Unconditional Derandomization Oded Goldreich Weizmann Institute of Science RANDOM 2010.
1 Mazes In The Theory of Computer Science Dana Moshkovitz.
Constant Degree, Lossless Expanders Omer Reingold AT&T joint work with Michael Capalbo (IAS), Salil Vadhan (Harvard), and Avi Wigderson (Hebrew U., IAS)
Undirected ST-Connectivity 2 DL Omer Reingold, STOC 2005: Presented by: Fenghui Zhang CPSC 637 – paper presentation.
Michael Bender - SUNY Stony Brook Dana Ron - Tel Aviv University Testing Acyclicity of Directed Graphs in Sublinear Time.
Undirected ST-Connectivity in Log-Space By Omer Reingold (Weizmann Institute) Year 2004 Presented by Maor Mishkin.
Derandomizing LOGSPACE Based on a paper by Russell Impagliazo, Noam Nissan and Avi Wigderson Presented by Amir Rosenfeld.
Complexity 1 Mazes And Random Walks. Complexity 2 Can You Solve This Maze?
1 Constructing Pseudo-Random Permutations with a Prescribed Structure Moni Naor Weizmann Institute Omer Reingold AT&T Research.
Randomness in Computation and Communication Part 1: Randomized algorithms Lap Chi Lau CSE CUHK.
The Power of Randomness in Computation 呂及人中研院資訊所.
Undirected ST-Connectivity In Log Space
1 Slides by Elery Pfeffer and Elad Hazan, Based on slides by Michael Lewin & Robert Sayegh. Adapted from Oded Goldreich’s course lecture notes by Eilon.
In a World of BPP=P Oded Goldreich Weizmann Institute of Science.
Undirected ST-Connectivity In Log Space Omer Reingold Slides by Sharon Bruckner.
1 On the Power of the Randomized Iterate Iftach Haitner, Danny Harnik, Omer Reingold.
Approximating the MST Weight in Sublinear Time Bernard Chazelle (Princeton) Ronitt Rubinfeld (NEC) Luca Trevisan (U.C. Berkeley)
Theory of Computing Lecture 15 MAS 714 Hartmut Klauck.
Pseudorandomness Emanuele Viola Columbia University April 2008.
Why Extractors? … Extractors, and the closely related “Dispersers”, exhibit some of the most “random-like” properties of explicitly constructed combinatorial.
Edge-disjoint induced subgraphs with given minimum degree Raphael Yuster 2012.
PROBABILISTIC COMPUTATION By Remanth Dabbati. INDEX  Probabilistic Turing Machine  Probabilistic Complexity Classes  Probabilistic Algorithms.
Lower Bounds for Property Testing Luca Trevisan U.C. Berkeley.
Markov Chains and Random Walks. Def: A stochastic process X={X(t),t ∈ T} is a collection of random variables. If T is a countable set, say T={0,1,2, …
Amplification and Derandomization Without Slowdown Dana Moshkovitz MIT Joint work with Ofer Grossman (MIT)
CSCI 115 Chapter 8 Topics in Graph Theory. CSCI 115 §8.1 Graphs.
My Favorite Ten Complexity Theorems of the Past Decade II Lance Fortnow University of Chicago.
Seminar on random walks on graphs Lecture No. 2 Mille Gandelsman,
Pseudorandom generators for group products Michal Koucký Institute of Mathematics, Prague Prajakta Nimbhorkar Pavel Pudlák IMSC, Chenai IM, Prague IMSC,
RANDOMNESS VS. MEMORY: Prospects and Barriers Omer Reingold, Microsoft Research and Weizmann With insights courtesy of Moni Naor, Ran Raz, Luca Trevisan,
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
Derandomized Constructions of k -Wise (Almost) Independent Permutations Eyal Kaplan Moni Naor Omer Reingold Weizmann Institute of ScienceTel-Aviv University.
Pseudo-random generators Talk for Amnon ’ s seminar.
Almost SL=L, and Near-Perfect Derandomization Oded Goldreich The Weizmann Institute Avi Wigderson IAS, Princeton Hebrew University.
Theory of Computational Complexity Probability and Computing Ryosuke Sasanuma Iwama and Ito lab M1.
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
Complexity Theory and Explicit Constructions of Ramsey Graphs Rahul Santhanam University of Edinburgh.
Umans Complexity Theory Lectures
Randomness and Computation
Coding, Complexity and Sparsity workshop
From dense to sparse and back again: On testing graph properties (and some properties of Oded)
Pseudorandomness when the odds are against you
Amnon Ta-Shma Uri Zwick
Turnstile Streaming Algorithms Might as Well Be Linear Sketches
The Curve Merger (Dvir & Widgerson, 2008)
Undirected ST-Connectivity In Log Space
The Zig-Zag Product and Expansion Close to the Degree
On Derandomizing Algorithms that Err Extremely Rarely
Presentation transcript:

Pseudorandom Walks: Looking Random in The Long Run or All The Way? Omer Reingold Weizmann Institute

Graph Walks G - a (possibly directed) graph. Assume G is out- regular (all out degrees are D). s - a vertex. Assume s sink connected component (all vertices reachable from s can also reach s). A walk in G from s: a sequence v 0, v 1,…v i,… s.t v 0 =s, and (v i,v i+1 ) is an edge in G. … G s v0v0 v4v4 v3v3 v2v2 v1v1 Alternatively a walk is a sequence of edge-labels a 1, a 2,…a i (each a i [D]). For a given G and s, labels ā v 0 =s,v 1,…,v i,… with (v i-1,v i ) beings the edge labeled a i out of v i-1.

How to Walk a Graph? Random walk - when in doubt, flip a coin: At step i, follow edge labeled a i uniformly and independently of all previous labels. If G is expanding enough, walk converges quickly to unique stationary distribution.

What is a Pseudorandom-Walk Generator? Short random seed Efficient Deterministic Generator a 1, a 2,…a i,… N,D, pseudorandom walk But what is a pseudorandom walk? First option: v 0, v 1,…v i looks like a random walk to a bounded distinguisher Same as a pseudorandom bit generator … More interesting: think of the walk as the distinguisher: The output of a length-i walk is v i A distribution W on labels a 1, a 2,…,a i implies a distribution on vertices v 0, v 1 [ W ],…v i [ W ]. W is pseudorandom if for every G (size N and degree D), s and i, the distributions v i [ W ] and v i [ U ] are statistically close. - -

Walks & Space-Bounded Computations Walking a graph requires log N memory – ith state: (v i,i)..Already know pseudorandom generators that fool space-bounded algorithms [AKS87, BNS89, Nisan90, INW94]. Shortest seed – log 2 N bits. In fact, pseudorandom walks PRGs that fool space-bounded algorithms … Seems like this talk is reaching a dead end … Lets shift topic and see if they notice …

Walks & Space-Bounded Computations Walking a graph requires log N memory – ith state: (v i,i)..Already know pseudorandom generators that fool space-bounded algorithms [AKS87, BNS89, Nisan90, INW94]. Shortest seed – log 2 N bits. In fact, pseudorandom walks PRGs that fool space-bounded algorithms …

R/W Space Bounded Algorithms.. read only... read only M.. write only write only.. Input Work Output: One Way Randomcoins 0/1 Space L : deterministic logspace L k : deterministic space O(log k n) RL : randomized logspace, poly-time one-sided error ( BPL : randomized logspace, poly-time two-sided error) RL (BPL) vs. L Does randomness help space bounded computation? RL (BPL) vs. L Does randomness help space bounded computation?

Given an RL algorithm for language P & input x configuration graph: poly(|x|) configs transitions on current random bit T (running time) poly(|x|) times s = start config t = accept config PR Walks Derandomize RL Walking the configuration graph with labels ā Running the algorithm with randomness ā a PR walk generator fools the RL algorithm Run your algorithm on the labels of PR walk: x P algorithm accepts w.p. ½ - x P algorithm never accepts == A PR walk generator that runs in logspace with seed length O(log N) RL = BPL = L By defn of RL: x P random walk from s ends at t w.p. ½ x P t unreachable from s

Where are we at? PR walks on directed graphs PRGs that fool space-bounded algorithms. Sufficiently efficient such PRGs imply RL = L viaOblivious Derandomization Nisans generator [Nisan 90] - O(log 2 N)-long seed RL L 2 ([Saks,Zhou 95] RL L 3/2 Oblivious derandomiztion is not the most powerful) Pseudorandom generators for space bounded computations – powerful derandomization tool

Undirected Connectivity Basic graph problem. Extensively studied. Time complexity – well understood: Two linear time algorithms, BFS and DFS, are known and used at least since the 1960s (context of AI, mazes, wiring of circuits, …). Work also for the directed case. Require linear space … G st

Undirected Connectivity in RL [Aleliunas, Karp, Lipton, Lovasz, Rackoff 79] Randomized space O(log N) for USTCON. The algorithm: take a, polynomially long, random walk from s and see if you reach t. Works because the walk converges in poly number of steps to uniform distribution on connected component. Undirected connectivity can be solved also in deterministic logspace [ Savitch 70, Nisan,Szemerédi,Wigderson 92, Armoni,Ta- Shma,Wigderson,Zhou 97, Trifonov 04, R 04 ] Undirected Connectivity in L Assume G regular and non-bipartite

The Algorithm [R] ĜĜ has constant degree. ĜEach connected component of Ĝ an expander. GĜ v in G define the set Cv={ } in Ĝ. u and v are connected Cu and Cv are in the same connected component. … G s t Assume G regular and non-bipartite … Ĝ logspace transformation highly connected; logarithmic diameter; random walk converges to uniform in logarithmic number of steps

What about PR Walks? Ĝ GAn edge between Cu and Cv in Ĝ projects to a polynomial path between u and v in G GĜ Ĝ GG is connected Ĝ an expander log path in Ĝ converges to uniform projects to a poly path in G that converges to uniform The projection is logspace GGOblivious of G, if G is consistently labelled … G s t … Ĝ Cu Cv vu

Labellings of Regular Digraphs Denote by i (v) the ith neighbor of v Inconsistently labelled: u,v,i s.t. i (u)= i (v) Consistently labelled: i i is a permutation (Every regular digraph has a consistent labelling) u v

Pseudo-Converging Walks Goal: walk Gen( U ) converges to stationary distribution - v t [ Gen( U ) ] -close to stationary. Thm1[ R04,RTV05 ] Thm1[ R04,RTV05 ] Gen that is Pseudo-Converging: D-regular, N-vertex, connected,consistently- labelled digraph G, start vertex s, Space and seed length - log(ND/ ) Walk length t = poly(mixing time) … Short random seed Efficient Deterministic Generator Efficient Deterministic Generator Gen a 1, a 2,…a i,… a t,… N,D,,… poly(1/ ). poly(1/ ). log(ND/ )

Do Pseudo-Converging Walks Suffice for Derandomize RL? [RTV05] A new complete promise problem for RL: st connectivity on rapidly-mixing digraphs… s t x P random walk from s ends at t w.p. ½ x P t unreachable from s Graph G that is poly mixing with stationary distribution: Layer uniform Within layer i = distribution of algs config at time i Graph G that is poly mixing x P polynomial weight of both s and t x P t unreachable from s ( t has zero weight)

For Oblivious Derandomization – Regular is Good Enough Thm1 [ R04,RTV05 ] Pseudo-Converging generator for walks on regular consistently-labelled digraphs. Thm2 [ RTV05 ] Pseudo-Converging generator for any regular digraph RL = L Graph labelling is at the heart of oblivious derandomization

What is it About Consistent Labelling? Consider a walk from u and a walk from v following a fixed sequence of labels (e.g., 0000…) If the graph is consistently labelled the two walks will never merge More generally, a walk on a consistently labelled graph never loses entropy. In fact, for RL = L, enough to give a long-enough walk for regular digraphs that (when starting at a uniform vertex) stays uniform.

Connectivity for undirected graphs [R04] Connectivity for regular digraphs [RTV05], Pseudo-converging walks for consistently-labelled, regular digraphs [R04, RTV05] Pseudo-converging walks for regular digraphs [RTV05] Connectivity for digraphs w/polynomial mixing time [RTV05] RL in L Suffice to prove RL=L Summary on RL vs. L It is not about reversibility but about regularity In fact it is about having estimates on stationary probabilities [CRV07]

Fixed Walks with Pseudorandom Properties Universal-traversal sequence (UTS) introduced by Cook in the late 70's with the motivation of proving USTCON in logspace. (N,D)-UTS: a sequence of edge labels in [D]. Guides a walk through all of the vertices of any D-regular graph on N vertices. [AKLLR79] poly-long UTS exist (probabilistic). [Nisan 90] Explicit, length-N log N UTS. Explicit polynomial-length UTS only for very few and limited cases (e.g., cycles [Istrail88]).

Fixed Walks with Pseudorandom Properties Cont. Universal-traversal sequences Universal-exploration sequences [Koucky 01]. Like traversal sequences but directions are relative. Thm [ R04 ] log-space constructible universal exploration sequences Thm [ R04,RTV05 ] log-space constructible universal traversal sequences for consistently- labelled digraphs. Open: full fledged universal traversal sequences

Concluding Remarks Considered two flavors of pseudorandom walks Pseudorandom all the way – equivalent to PRG that fool space bounded computations Pseudorandom in the limit – sufficient to derandomize RL Surprising applications of PRG for space bounded computations [ Ind00,Siv02,KNR05,HHR06,… ] Undirected Dirichlet Problem: Input: undirected graph G, a vertex s, a set B of vertices, a function f: B [0, 1]. Output: estimation of f(b) where b is the entry point of the random walk into B.