Symmetric about the y axis

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Equations in Quadratic Form
Trigonometric Equations I
The Law of Cosines.
SINE AND COSINE FUNCTIONS
The Law of Sines.
SIMPLE AND COMPOUND INTEREST
Integration by Parts.
Relations And Functions. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of all.
2.4: Odd and Even Functions So for an even function, for every point (x, y) on the graph, the.
Mathematical Models Constructing Functions And Optimisation.
Matrices are identified by their size.
If A and B are both m × n matrices then the sum of A and B, denoted A + B, is a matrix obtained by adding corresponding elements of A and B. add these.
Operations on Functions
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
FUNCTIONSFUNCTIONS Symmetric about the y axis Symmetric about the origin.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
FUNCTIONSFUNCTIONS Symmetric about the y axis Symmetric about the origin.
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
Warm-Up. FUNCTIONSFUNCTIONS Symmetric about the y axis Symmetric about the origin.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
Operations on Functions
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
exponential functions
Operations on Functions
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

Symmetric about the y axis FUNCTIONS Symmetric about the origin

Even functions have y-axis Symmetry 8 7 6 5 4 3 2 1 2 -7 -6 -5 -4 -3 -2 -1 1 5 7 3 4 6 8 -2 -3 -4 -5 -6 -7 So for an even function, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

Odd functions have origin Symmetry 8 7 6 5 4 3 2 1 2 -7 -6 -5 -4 -3 -2 -1 1 5 7 3 4 6 8 -2 -3 -4 -5 -6 -7 So for an odd function, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

x-axis Symmetry We wouldn’t talk about a function with x-axis symmetry because it wouldn’t BE a function. 8 7 6 5 4 3 2 1 2 -7 -6 -5 -4 -3 -2 -1 1 5 7 3 4 6 8 -2 -3 -4 -5 -6 -7

A function is even if f( -x) = f(x) for every number x in the domain. So if you plug a –x into the function and you get the original function back again it is even. Is this function even? YES Is this function even? NO

A function is odd if f( -x) = - f(x) for every number x in the domain. So if you plug a –x into the function and you get the negative of the function back again (all terms change signs) it is odd. Is this function odd? NO Is this function odd? YES

If a function is not even or odd we just say neither (meaning neither even nor odd) Determine if the following functions are even, odd or neither. Not the original and all terms didn’t change signs, so NEITHER. Got f(x) back so EVEN.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au