Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original.

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: hedonic pricing Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 1)
1 Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate.
EC220 - Introduction to econometrics (chapter 13)
ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source.
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the central limit theorem Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 2)
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.13 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.4 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: Friedman’s critique of OLS estimation of the consumption function Original.
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 MAXIMUM LIKELIHOOD ESTIMATION OF REGRESSION COEFFICIENTS X Y XiXi 11  1  +  2 X i Y =  1  +  2 X We will now apply the maximum likelihood principle.
MODELS WITH A LAGGED DEPENDENT VARIABLE
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
To find the expected value of a function of a random variable, you calculate all the possible values of the function, weight them by the corresponding.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.19 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: the use of simulation Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a random variable Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: population variance of a discreet random variable Original citation:
EC220 - Introduction to econometrics (chapter 5)
The third sequence defined the expected value of a function of a random variable X. There is only one function that is of much interest to us, at least.
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 10)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (review chapter). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you have a red die which, when thrown, takes the numbers from 1 to 6 with equal probability.

2 red green Suppose that you also have a green die that can take the numbers from 1 to 6 with equal probability. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

3 red green We will define a random variable X as the sum of the numbers when the dice are thrown. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

4 For example, if the red die is 4 and the green one is 6, X is equal to 10. red green PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Similarly, if the red die is 2 and the green one is 5, X is equal to 7. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green The table shows all the possible outcomes. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green X If you look at the table, you can see that X can be any of the numbers from 2 to 12. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xf We will now define f, the frequencies associated with the possible values of X. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xf For example, there are four outcomes which make X equal to 5. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xf Similarly you can work out the frequencies for all the other values of X. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xfp Finally we will derive the probability of obtaining each value of X. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xfp If there is 1/6 probability of obtaining each number on the red die, and the same on the green die, each outcome in the table will occur with 1/36 probability. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 Hence to obtain the probabilities associated with the different values of X, we divide the frequencies by 36. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

14 The distribution is shown graphically. in this example it is symmetrical, highest for X equal to 7 and declining on either side. 6 __ 36 5 __ 36 4 __ 36 3 __ 36 2 __ 36 2 __ 36 3 __ 36 5 __ 36 4 __ 36 probability X PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section R.2 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics