Announcements Course TA: Danny Kumar

Slides:



Advertisements
Similar presentations
Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
Advertisements

Additional Topics ARTIFICIAL INTELLIGENCE
Solving problems by searching
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
Artificial Intelligence Solving problems by searching
Problem Solving by Searching Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 3 Spring 2007.
Artificial Intelligence Problem Solving Eriq Muhammad Adams
May 12, 2013Problem Solving - Search Symbolic AI: Problem Solving E. Trentin, DIISM.
1 Chapter 3 Solving Problems by Searching. 2 Outline Problem-solving agentsProblem-solving agents Problem typesProblem types Problem formulationProblem.
Solving Problem by Searching Chapter 3. Outline Problem-solving agents Problem formulation Example problems Basic search algorithms – blind search Heuristic.
Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
Artificial Intelligence for Games Uninformed search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
UNINFORMED SEARCH Problem - solving agents Example : Romania  On holiday in Romania ; currently in Arad.  Flight leaves tomorrow from Bucharest.
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
CHAPTER 3 CMPT Blind Search 1 Search and Sequential Action.
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
CS 380: Artificial Intelligence Lecture #3 William Regli.
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
Problem Solving by Searching Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 3 Spring 2004.
Artificial Intelligence Chapter 3: Solving Problems by Searching
Uninformed Search Reading: Chapter 3 by today, Chapter by Wednesday, 9/12 Homework #2 will be given out on Wednesday DID YOU TURN IN YOUR SURVEY?
Solving problems by searching
1 Solving problems by searching Chapter 3. 2 Why Search? To achieve goals or to maximize our utility we need to predict what the result of our actions.
Solving problems by searching This Lecture Read Chapters 3.1 to 3.4 Next Lecture Read Chapter 3.5 to 3.7 (Please read lecture topic material before and.
Review: Search problem formulation Initial state Actions Transition model Goal state (or goal test) Path cost What is the optimal solution? What is the.
Solving Problems by Searching CPS Outline Problem-solving agents Example problems Basic search algorithms.
Agents & Search Tamara Berg CS 560 Artificial Intelligence Many slides throughout the course adapted from Dan Klein, Stuart Russell, Andrew Moore, Svetlana.
1 Solving problems by searching This Lecture Chapters 3.1 to 3.4 Next Lecture Chapter 3.5 to 3.7 (Please read lecture topic material before and after each.
Search Tamara Berg CS 560 Artificial Intelligence Many slides throughout the course adapted from Dan Klein, Stuart Russell, Andrew Moore, Svetlana Lazebnik,
AI in game (II) 권태경 Fall, outline Problem-solving agent Search.
1 Solving problems by searching 171, Class 2 Chapter 3.
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
SOLVING PROBLEMS BY SEARCHING Chapter 3 August 2008 Blind Search 1.
A General Introduction to Artificial Intelligence.
Goal-based Problem Solving Goal formation Based upon the current situation and performance measures. Result is moving into a desirable state (goal state).
Solving problems by searching 1. Outline Problem formulation Example problems Basic search algorithms 2.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 3 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Introduction to Artificial Intelligence CS 438 Spring 2008 Today –AIMA, Ch. 3 –Problem Solving Agents State space search –Programming Assignment Thursday.
Solving problems by searching A I C h a p t e r 3.
1 Solving problems by searching Chapter 3. 2 Outline Problem types Example problems Assumptions in Basic Search State Implementation Tree search Example.
Lecture 2: Problem Solving using State Space Representation CS 271: Fall, 2008.
WEEK 5 LECTURE -A- 23/02/2012 lec 5a CSC 102 by Asma Tabouk Introduction 1 CSC AI Basic Search Strategies.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Artificial Intelligence Solving problems by searching.
Solving problems by searching Chapter 3. Types of agents Reflex agent Consider how the world IS Choose action based on current percept Do not consider.
Solving problems by searching
Problem Solving Agents
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
ECE 448 Lecture 4: Search Intro
Problem Solving by Searching
Problem Solving as Search
Artificial Intelligence
Solving problems by searching
Solving problems by searching
Problem Solving and Searching
Artificial Intelligence
Problem Solving and Searching
CS 2710, ISSP 2160 Foundations of Artificial Intelligence
Solving problems by searching
Solving problems by searching
ARTIFICIAL INTELLIGENCE
ECE457 Applied Artificial Intelligence Fall 2007 Lecture #2
Solving problems by searching
Solving Problems by Searching
CS440/ECE 448 Lecture 4: Search Intro
Solving problems by searching
Presentation transcript:

Announcements Course TA: Danny Kumar (ndkumar@cs.unc.edu) Guest lectures next week Assignment 1 out, due Tuesday, September 14 Course discussion board You should be able to find the discussion thread “AI in the news/on the Web” on Blackboard For participation points: at least two posts during the semester

Solving problems by searching Chapter 3

Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known environments Example: Start state Goal state

Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known environments The solution is a fixed sequence of actions Search is the process of looking for the sequence of actions that reaches the goal Once the agent begins executing the search solution, it can ignore its percepts (open-loop system)

Search problem components Initial state Actions Transition model What is the result of performing a given action in a given state? Goal state Path cost Assume that it is a sum of nonnegative step costs The optimal solution is the sequence of actions that gives the lowest path cost for reaching the goal Initial state Goal state

Example: Romania On vacation in Romania; currently in Arad Flight leaves tomorrow from Bucharest Initial state Arad Actions Go from one city to another Transition model If you go from city A to city B, you end up in city B Goal state Bucharest Path cost Sum of edge costs

State space The initial state, actions, and transition model define the state space of the problem The set of all states reachable from initial state by any sequence of actions Can be represented as a directed graph where the nodes are states and links between nodes are actions What is the state space for the Romania problem?

Example: Vacuum world States Agent location and dirt location How many possible states? What if there are n possible locations? Actions Left, right, suck Transition model

Vacuum world state space graph

Example: The 8-puzzle Optimal solution of n-Puzzle is NP-hard States Locations of tiles 8-puzzle: 181,440 states 15-puzzle: 1.3 trillion states 24-puzzle: 1025 states Actions Move blank left, right, up, down Path cost 1 per move Optimal solution of n-Puzzle is NP-hard

Example: Robot motion planning States Real-valued coordinates of robot joint angles Actions Continuous motions of robot joints Goal state Desired final configuration (e.g., object is grasped) Path cost Time to execute, smoothness of path, etc.

Other Real-World Examples Routing Touring VLSI layout Assembly sequencing Protein design

Search Given: How do we find the optimal solution? Initial state Actions Transition model Goal state Path cost How do we find the optimal solution? How about building the state space and then using Dijkstra’s shortest path algorithm? The state space is huge! Complexity of Dijkstra’s is O(E + V log V), where V is the size of the state space

Tree Search Let’s begin at the start node and expand it by making a list of all possible successor states Maintain a fringe or a list of unexpanded states At each step, pick a state from the fringe to expand Keep going until you reach the goal state Try to expand as few states as possible

… Search tree “What if” tree of possible actions and outcomes Starting state Successor state Action Goal state “What if” tree of possible actions and outcomes The root node corresponds to the starting state The children of a node correspond to the successor states of that node’s state A path through the tree corresponds to a sequence of actions A solution is a path ending in the goal state Nodes vs. states A state is a representation of a physical configuration, while a node is a data structure that is part of the search tree

Tree Search Algorithm Outline Initialize the fringe using the starting state While the fringe is not empty Choose a fringe node to expand according to search strategy If the node contains the goal state, return solution Else expand the node and add its children to the fringe

Tree search example

Tree search example

Tree search example Fringe

Search strategies A search strategy is defined by picking the order of node expansion Strategies are evaluated along the following dimensions: Completeness: does it always find a solution if one exists? Optimality: does it always find a least-cost solution? Time complexity: number of nodes generated Space complexity: maximum number of nodes in memory Time and space complexity are measured in terms of b: maximum branching factor of the search tree d: depth of the least-cost solution m: maximum length of any path in the state space (may be infinite)

Uninformed search strategies Uninformed search strategies use only the information available in the problem definition Breadth-first search Uniform-cost search Depth-first search Iterative deepening search