Peter Athron David Miller In collaboration with Measuring Fine Tuning.

Slides:



Advertisements
Similar presentations
SUSY Higgs with Non-perturbative effects Yukihiro Mimura (National Taiwan University) Based on PLB718 (2013) Collaboration with N. Haba, K. Kaneta,
Advertisements

Fine Tuning Standard Model and Beyond Peter Athron Dr David Miller In collaboration with.
THE FINE-TUNING PROBLEM IN SUSY AND LITTLE HIGGS
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Beyond the MSSM From the little hierarchy problem to the Baryon Asymmetry of the Universe Kfir Blum Advisors: Yossi Nir and Eli Waxman.
Peter Athron David Miller In collaboration with Fine Tuning.
Peter Athron David Miller In collaboration with Fine Tuning In Supersymmetric Models.
Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv: , Phys.Rev.D76:075010, arXiv: [hep-ph], AIP Conf.Proc.903: ,2007.
Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv: )
Effective Operators in the MSSM Guillaume Drieu La Rochelle, LAPTH.
KET-BSM meeting Aachen, April 2006 View from the Schauinsland in Freiburg a couple of weeks ago View from the Schauinsland in Freiburg a couple of weeks.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Status of SUSY Higgs Physics Monoranjan Guchait TIFR, Mumbai EWSB & Flavors in the light of LHC February 20-22, 2014 IIT Guwahati.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
The Top Quark and Precision Measurements S. Dawson BNL April, 2005 M.-C. Chen, S. Dawson, and T. Krupovnikas, in preparation M.-C. Chen and S. Dawson,
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
The Electroweak Phase Transition within natural GNMSSM models Presenter: Christopher Harman Supervisor: Dr. Stephan Huber University of Sussex Image courtesy.
A.F.Kord Sabzevar Tarbiat Moallem University (Iran) September 2011.
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier Shuo Yang.
Center for theoretical Physics at BUE
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
DIVERGENCIES AND SYMMETRIES IN HIGGS-GAUGE UNIFICATION THEORIES Carla Biggio Institut de Física d'Altes Energies Universitat Autonoma de Barcelona XL Rencontres.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
NMSSM & B-meson Dileptonic Decays Jin Min Yang ITP, Beijing arXiv: Heng, Wang, Oakes, Xiong, JMY 杨 金 民杨 金 民.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
1 THEORETICAL PREDICTIONS FOR COLLIDER SEARCHES “Big” and “little” hierarchy problems Supersymmetry Little Higgs Extra dimensions G.F. Giudice CERN.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
Low-scale Gaugino Mediation in Warped Spacetime Toshifumi Yamada Sokendai, KEK in collaboration with Nobuchika Okada (Univ. of Alabama ) arXiv: May 11,
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Spectrum generation for SUSY and non-SUSY extensions of the Standard Model FlexibleSUSY Peter Athron, Jae-hyeon Park, Dominik Stöckinger, Alexander Voigt.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
Standard Model - Standard Model prediction (postulated that neutrinos are massless, consistent with observation that individual lepton flavors seemed to.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Yasunori Nomura UC Berkeley; LBNL. What do we expect to see at TeV?  Physics of electroweak symmetry breaking Is there New Physics at TeV?  We don’t.
Measurements of the model parameter in the Littlest Higgs Model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Phenomenology of NMSSM in TeV scale mirage mediation
Origin of large At in the MSSM with extra vector-like matters
1-lepton + Multijets Analysis bRPV interpretation
Classically conformal B-L extended Standard Model
WHAT IS Msusy? I am grateful to the Organisers for this title! I understand it reflects certain frustration….
Dark Matter Phenomenology of the GUT-less CMSSM
Grand Unified Theories and Higgs Physics
Fine Tuning In Supersymmetric Models
Measuring Fine Tuning Peter Athron In collaboration with David Miller.
NMSSM & B-meson Dileptonic Decays
The Constrained E6SSM TexPoint fonts used in EMF.
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Supersymmetry, naturalness and environmental selection
Phenomenology of SUSY Models with Non-universal Sfermions
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Electric Dipole Moments in PseudoDirac Gauginos
Fine-tuning in the models with non-universal gaugino masses
Shuo Yang Associated production of the Higgs boson and
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Peter Athron David Miller In collaboration with Measuring Fine Tuning

+ physical mass = “bare mass” + “loop corrections” =+ divergent  Cut off integral at Planck Scale Fine tuning Hierarchy Problem

Beyond the Standard Model Physics  Technicolour  Large Extra Dimensions  Little Higgs  Twin Higgs  Supersymmetry

MSSM EWSB constraint (Tree Level) : If sparticle mass limits ) Parameters Need tuning for Little Hierarchy Problem

Superymmetry Models with extended Higgs sectors  NMSSM  nMSSM  ESSM Supersymmetry Plus  Little Higgs  Twin Higgs Alternative solutions to the Hierarchy Problem  Technicolor  Large Extra Dimensions  Little Higgs  Twin Higgs Need a reliable, quantitative measure of fine tuning to judge the success of these approaches. Solutions?

R. Barbieri & G.F. Giudice, (1988) Define Tuning is fine tuned % change in from 1% change in Observable Parameter Traditional Measure

Limitations of the Traditional Measure  Considers each parameter separately  Fine tuning is about cancellations between parameters.  A good fine tuning measure considers all parameters together.  Implicitly assumes a uniform distribution of parameters  Parameters in L GUT may be different to those in L SUSY  parameters drawn from a different probability distribution  Takes infinitesimal variations in the parameters  In some regions of parameter space observables may look stable (unstable) locally, but unstable (stable) over finite variations in the parameters.  Considers only one observable  Theories may contain tunings in several observables

Global Sensitivity Consider: responds sensitively to All values of appear equally tuned! throughout the whole parameter space (globally) All are atypical? True tuning must be quantified with a normalised measure G. W. Anderson & D.J Castano (1995) Only relative sensitivity between different points indicates atypical values of

parameter space volume restricted by, Parameter space point, Unnormalised Tuning New Measure Normalised Tuning mean value `` `` AND

Toy SM

Choose a point P in the parameter space at GUT scale Take random fluctuations about this point. Using a modified version of Softsusy (B.C. Allanach)  Run to Electro-Weak Symmetry Breaking scale.  Predict M z and sparticle masses Count how often M z (and sparticle masses) is ok Apply fine tuning measure Fine Tuning in the CMSSM

Tuning in

Tuning

Normal points spectrums “Natural” Point 1

“Natural” Point 2

If we normalise with NP1If we normalise with NP2 Tunings for the points shown in plots are:

Naturalness comparisons of BSM models need a reliable tuning measure, but the traditional measure neglects:  Many parameter nature of fine tuning;  Tunings in other observables;  Behaviour over finite variations;  Probability dist. of parameters;  Global Sensitivity.  New measure addresses these issues and:  Demonstrates and increase with.  Naïve interpretation: tuning worse than thought.  Normalisation may dramatically change this.  If we can explain the Little hierarchy Problem.  Alternatively a large may be reduced by changing parameterisation.  Could provide a hint for a GUT. Conclusions

Tuning in

Tuning

m 1/2 (GeV)

For our study of tuning in the CMSSM we chose a grid of points: Plots showing tuning variation in m 1/2 were obtained by taking the average tuning for each m 1/2 over all m 0. Plots showing tuning variation in m 0 were obtained by taking the average tuning for each m 0 over all m 1/2. Technical Aside To reduce statistical errors:

For example... MSUGRA benchmark point SPS1a: ALL

Supersymmetry  The only possible extension to space-time  Unifies gauge couplings  Provides Dark Matter candidates  Leptogenesis in the early universe  Elegant solution to the Hierarchy Problem!  Essential ingredient for M-Theory