STATICS OF PARTICLES Forces are vector quantities; they add according to the parallelogram law. The magnitude and direction of the resultant R of two forces.

Slides:



Advertisements
Similar presentations
Chapter 2 STATICS OF PARTICLES
Advertisements

Points, Vectors, Lines, Spheres and Matrices
Engineering Mechanics
14 Vectors in Three-dimensional Space Case Study
STATICS OF RIGID BODIES
6.4 Best Approximation; Least Squares
Vector Algebra One Mark Questions PREPARED BY:
Lecture 13: Force System Resultants
Transformations Ed Angel Professor Emeritus of Computer Science
CE Statics Lecture 3.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Statics of Particles.
Rigid Bodies: Equivalent Systems of Forces
WHAT IS MECHANICS? Either the body or the forces could be large or small. Study of what happens to a “ thing ” (the technical name is “ BODY ” ) when FORCES.
Chapter 2 Resultant of Coplannar Force Systems
Chapter 2 Statics of Particles
Vector Operation and Force Analysis
Scalar and Vector Fields
4.6 Moment due to Force Couples
Forces and equilibrium
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Slide #: 1 Chapter 3 Rigid Bodies : Equivalent Systems of Forces.
Overview of Mechanical Engineering for Non-MEs Part 1: Statics 2 Statics of Particles Concurrent Forces.
Statics of Particles.
Statics of Particles.
An-Najah National University College of Engineering
CHAPTER TWO Force Vectors.
Scalars A scalar is any physical quantity that can be completely characterized by its magnitude (by a number value) A scalar is any physical quantity that.
Vector Quantities We will concern ourselves with two measurable quantities: Scalar quantities: physical quantities expressed in terms of a magnitude only.
Dynamics AE-001 Sharif University-Aerospace Dep. Fall 2004.
In the study of the equilibrium of rigid bodies, i.e. the situation when the external forces acting on a rigid body form a system equivalent to zero, we.
Engineering Fundamentals Session 9. Equilibrium A body is in Equilibrium if it moves with constant velocity. A body at rest is a special case of constant.
Overview of Mechanical Engineering for Non-MEs Part 1: Statics 3 Rigid Bodies I: Equivalent Systems of Forces.
Engineering Mechanics: Statics Chapter 2: Force Vectors Chapter 2: Force Vectors.
RIGID BODIES: EQUIVALENT SYSTEM OF FORCES
Force Vectors Phy621- Gillis
EGR 280 Mechanics 2 – Moments, equivalent systems of forces.
Principle of Engineering ENG2301 F Mechanics Section F Textbook: F A Foundation Course in Statics and Dynamics F Addison Wesley Longman 1997.
Midterm Review  Five Problems 2-D/3-D Vectors, 2-D/3-D equilibrium, Dot Product, EoE, Cross Product, Moments  Closed Book & Note  Allowed to bring.
Equivalent Systems of Forces
Chapter 3 Vectors. Vector quantities  Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this.
1 The scalar product or dot product between two vectors P and Q is defined as Scalar products: -are commutative, -are distributive, -are not associative,
Cont. ERT 146 Engineering Mechanics STATIC. 4.4 Principles of Moments Also known as Varignon ’ s Theorem “ Moment of a force about a point is equal to.
The forces acting on a rigid body can be separated into two groups: (1) external forces (representing the action of other rigid bodies on the rigid body.
Statics (ENGR 2214) Prof. S. Nasseri Statics ENGR 2214 Vectors in three dimensional space.
Force is a Vector A Force consists of: Magnitude Direction –Line of Action –Sense Point of application –For a particle, all forces act at the same point.
Lecture #6 Moments, Couples, and Force Couple Systems.
MEC 0011 Statics Lecture 4 Prof. Sanghee Kim Fall_ 2012.
Dr. Baljeet Singh Department of Mathematics
Introduction Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application.
GOVERNMENT ENGINEERING COLLEGE, DAHOD CIVIL ENGINEERING DEPARTMENT
Rigid Bodies: Equivalent Systems of Forces
Statics of Particles.
RIGID BODIES: EQUIVALENT FORCE SYSTEMS
RIGID BODIES: EQUIVALENT FORCE SYSTEMS
Statics of Particles.
Statics of Particles.
Statics of Particles.
Statics of Particles.
Statics of Particles.
Statics of Particles.
Chapter 4 EQUILIBRIUM OF RIGID BODIES
Statics of Particles.
STATICS (ENGINEERING MECHANICS-I)
KNUS&T Kumasi-Ghana Instructor: Dr. Joshua Ampofo
CE Statics Lecture 9.
Statics of Particles.
CE Statics Lecture 8.
Presentation transcript:

STATICS OF PARTICLES Forces are vector quantities; they add according to the parallelogram law. The magnitude and direction of the resultant R of two forces P and Q can be determined either graphically or by trigonometry. R P A Q

Any given force acting on a particle can be resolved into two or more components, i.e.., it can be replaced by two or more forces which have the same effect on the particle. A force F can be resolved into two components P and Q by drawing a parallelogram which has F for its diagonal; the components P and Q are then represented by the two adjacent sides of the parallelogram and can be determined either graphically or by trigonometry. Q F A P

F = Fx i + Fy j Fx = F cos q Fy = F sin q Fy tan q = Fx F = Fx + Fy 2 A force F is said to have been resolved into two rectangular components if its components are directed along the coordinate axes. Introducing the unit vectors i and j along the x and y axes, F = Fx i + Fy j y Fx = F cos q Fy = F sin q tan q = Fy Fx Fy = Fy j F j F = Fx + Fy 2 q x i Fx = Fx i

Rx = S Rx Ry = S Ry Ry tan q = R = Rx + Ry 2 Rx When three or more coplanar forces act on a particle, the rectangular components of their resultant R can be obtained by adding algebraically the corresponding components of the given forces. Rx = S Rx Ry = S Ry The magnitude and direction of R can be determined from tan q = Ry Rx R = Rx + Ry 2

Fx = F cos qx Fy = F cos qy Fz = F cos qz Fy Fy qy F F qx Fx Fx Fz Fz B B Fy Fy qy A F A F D D O O qx Fx Fx x x Fz Fz E E C C z z y A force F in three-dimensional space can be resolved into components B Fy F Fx = F cos qx Fy = F cos qy A D O Fz = F cos qz Fx x qz E Fz C z

F = F (cosqx i + cosqy j + cosqz k ) l (Magnitude = 1) The cosines of qx , qy , and qz are known as the direction cosines of the force F. Using the unit vectors i , j, and k, we write Fy j F = F l cos qy j Fx i cos qz k x Fz k F = Fx i + Fy j + Fz k cos qx i z or F = F (cosqx i + cosqy j + cosqz k )

l = cosqx i + cosqy j cos2qx + cos2qy F = Fx + Fy + Fz 2 cosqx = Fx F l (Magnitude = 1) cos qy j l = cosqx i + cosqy j + cosqz k Fy j cos qz k F = F l Since the magnitude of l is unity, we have Fx i x cos2qx + cos2qy + cos2qz = 1 Fz k z cos qx i In addition, F = Fx + Fy + Fz 2 cosqx = Fx F cosqy = Fy F cosqz = Fz F

MN = dx i + dy j + dz k MN 1 l = = ( dx i + dy j + dz k ) d y A force vector F in three-dimensions is defined by its magnitude F and two points M and N along its line of action. The vector MN joining points M and N is N (x2, y2, z2) F dy = y2 - y1 l dz = z2 - z1 < 0 dx = x2 - x1 M (x1, y1, z1) x z MN = dx i + dy j + dz k The unit vector l along the line of action of the force is l = = ( dx i + dy j + dz k ) MN 1 d

F = F l = ( dx i + dy j + dz k ) F d Fdx d Fdy d Fdz d Fx = Fy = Fz = d = dx + dy + dz 2 2 2 N (x2, y2, z2) dy = y2 - y1 A force F is defined as the product of F and l. Therefore, dz = z2 - z1 < 0 dx = x2 - x1 M (x1, y1, z1) x z F = F l = ( dx i + dy j + dz k ) F d From this it follows that Fdx d Fdy d Fdz d Fx = Fy = Fz =

When two or more forces act on a particle in three-dimensions, the rectangular components of their resultant R is obtained by adding the corresponding components of the given forces. Rx = S Fx Ry = S Fy Rz = S Fz The particle is in equilibrium when the resultant of all forces acting on it is zero.

S Fx = 0 S Fy = 0 S Fz = 0 S Fx = 0 S Fy = 0 To solve a problem involving a particle in equilibrium, draw a free-body diagram showing all the forces acting on the particle. The conditions which must be satisfied for particle equilibrium are S Fx = 0 S Fy = 0 S Fz = 0 In two-dimensions , only two of these equations are needed S Fx = 0 S Fy = 0

V = P x Q V = PQ sin q Q x P = - (P x Q) V = P x Q The vector product of two vectors is defined as Q V = P x Q q P The vector product of P and Q forms a vector which is perpendicular to both P and Q, of magnitude V = PQ sin q This vector is directed in such a way that a person located at the tip of V observes as counterclockwise the rotation through q which brings vector P in line with vector Q. The three vectors P, Q, and V - taken in that order - form a right-hand triad. It follows that Q x P = - (P x Q)

P = Px i + Py j + Pz k Q = Qx i + Qy j + Qz k It follows from the definition of the vector product of two vectors that the vector products of unit vectors i, j, and k are k i i x i = j x j = k x k = 0 i x j = k , j x k = i , k x i = j , i x k = - j , j x i = - k , k x j = - i The rectangular components of the vector product V of two vectors P and Q are determined as follows: Given P = Px i + Py j + Pz k Q = Qx i + Qy j + Qz k The determinant containing each component of P and Q is expanded to define the vector V, as well as its scalar components

P = Px i + Py j + Pz k Q = Qx i + Qy j + Qz k V = P x Q = = Vx i + Vy j + Vz k where Vx = Py Qz - Pz Qy Vy = Pz Qx - Px Qz Vz = Px Qy - Py Qx

MO = r x F MO = rF sin q = Fd Mo The moment of force F about point O is defined as the vector product MO = r x F F where r is the position vector drawn from point O to the point of application of the force F. The angle between the lines of action of r and F is q. O r q d A The magnitude of the moment of F about O can be expressed as MO = rF sin q = Fd where d is the perpendicular distance from O to the line of action of F.

Mx = y Fz - z Fy My = zFx - x Fz Mz = x Fy - y Fx Fy j A (x , y, z ) y j The rectangular components of the moment Mo of a force F are determined by expanding the determinant of r x F. Fx i r Fz k O x i x z k z i x Fx j y Fy k z Fz Mo = r x F = = Mx i + My j + Mzk where Mx = y Fz - z Fy My = zFx - x Fz Mz = x Fy - y Fx

rA/B = xA/B i + yA/B j + zA/B k Fy j A (x A, yA, z A) B (x B, yB, z B) In the more general case of the moment about an arbitrary point B of a force F applied at A, we have Fx i r Fz k O x z i xA/B Fx j yA/B Fy k zA/B Fz MB = rA/B x F = rA/B = xA/B i + yA/B j + zA/B k where xA/B = xA- xB yA/B = yA- yB zA/B = zA- zB and

MB = (xA- xB )Fy + (yA- yB ) Fx In the case of problems involving only two dimensions, the force F can be assumed to lie in the xy plane. Its moment about point B is perpendicular to that plane. It can be completely defined by the scalar Fy j A rA/B Fx i (yA - yB ) j B (xA - xB ) i O x z MB = MB k MB = (xA- xB )Fy + (yA- yB ) Fx The right-hand rule is useful for defining the direction of the moment as either into or out of the plane (positive or negative k direction).

P Q = PQ cos q P Q = Px Qx + Py Qy + Pz Qz The scalar product of two vectors P and Q is denoted as P Q ,and is defined as Q q P Q = PQ cos q where q is the angle between the two vectors P The scalar product of P and Q is expressed in terms of the rectangular components of the two vectors as P Q = Px Qx + Py Qy + Pz Qz

POL = Px cos qx + Py cos qy + Pz cos qz The projection of a vector P on an axis OL can be obtained by forming the scalar product of P and the unit vector l along OL. qy A l P qx x O qz z POL = P l Using rectangular components, POL = Px cos qx + Py cos qy + Pz cos qz

Sx Px Qx Sy Py Qy Sz Pz Qz S (P x Q ) = The mixed triple product of three vectors S, P, and Q is Sx Px Qx Sy Py Qy Sz Pz Qz S (P x Q ) = The elements of the determinant are the rectangular components of the three vectors.

l x x Fx l y y Fy l z z Fz MOL = l MO = l (r x F) = y The moment of a force F about an axis OL is the projection OC on OL of the moment MO of the force F. This can be written as a mixed triple product. MO F C l A (x, y, z) r O x z l x x Fx l y y Fy l z z Fz MOL = l MO = l (r x F) = lx, ly , lz = direction cosines of axis OL x, y , z = components of r Fx, Fy , Fz = components of F

M - F d F Two forces F and -F having the same magnitude, parallel lines of action, and opposite sense are said to form a couple. The moment of a couple is independent of the point about which it is computed; it is a vector M perpendicular to the plane of the couple and equal in magnitude to the product Fd.

M y y - F y (M = Fd) My M d F O Mx O O x x x z z z Mz Two couples having the same moment M are equivalent (they have the same effect on a given rigid body).

F F MO r A A O O Any force F acting at a point A of a rigid body can be replaced by a force-couple system at an arbitrary point O, consisting of the force F applied at O and a couple of moment MO equal to the moment about point O of the force F in its original position. The force vector F and the couple vector MO are always perpendicular to each other.

Any system of forces can be reduced to a force-couple system at a given point O. First, each of the forces of the system is replaced by an equivalent force-couple system at O. Then all of the forces are added to obtain a resultant force R, and all of couples are added to obtain a resultant couple vector MO. In general, the resultant force R and the couple vector MO will not be perpendicular to each other. R R

S F = S F’ S Mo = S Mo’ F3 F1 R A3 A1 r1 r3 r2 O A2 O F2 M As far as rigid bodies are concerned, two systems of forces, F1, F2, F3 . . . , and F’1, F’2, F’3 . . . , are equivalent if, and only if, S F = S F’ and S Mo = S Mo’

If the resultant force R and the resultant couple vector MO are perpendicular to each other, the force-couple system at O can be further reduced to a single resultant force. R A3 R r1 A1 r2 O A2 O R O F2 M This is the case for systems consisting of either (a) concurrent forces, (b) coplanar forces, or (c) parallel forces. If the resultant force and couple are directed along the same line, the force-couple system is termed a wrench.