Reason and Argument Chapter 6 (1/4).

Slides:



Advertisements
Similar presentations
Logic The study of correct reasoning.
Advertisements

TRUTH TABLES Section 1.3.
TRUTH TABLES The general truth tables for each of the connectives tell you the value of any possible statement for each of the connectives. Negation.
Constructing a Truth Table
Truth-Tables. Recap Deductive Validity We say that an argument is deductively valid when it has the following property: If the premises of the argument.
Logic & Critical Reasoning
Sentential Logic 2. REVIEW Deductive Validity We say that an argument is deductively valid when it has the following property: If the premises of the.
Sentential Logic. One of our main critical thinking questions was: Does the evidence support the conclusion? How do we evaluate whether specific evidence.
Logic ChAPTER 3 1. Truth Tables and Validity of Arguments
John Rosson Thursday February 15, 2007 Survey of Mathematical Ideas Math 100 Chapter 3, Logic.
Philosophy 148 Chapter 6. Truth-Functional Logic Chapter 6 introduces a formal means to determine whether arguments are valid, so that there is never.
Review: Logic of Categories = Categorical Logic.
DEDUCTIVE REASONING: PROPOSITIONAL LOGIC Purposes: To analyze complex claims and deductive argument forms To determine what arguments are valid or not.
Syllabus Every Week: 2 Hourly Exams +Final - as noted on Syllabus
Today’s Topics n Review Logical Implication & Truth Table Tests for Validity n Truth Value Analysis n Short Form Validity Tests n Consistency and validity.
1 Section 1.2 Propositional Equivalences. 2 Equivalent Propositions Have the same truth table Can be used interchangeably For example, exclusive or and.
1 Section 1.1 Logic. 2 Proposition Statement that is either true or false –can’t be both –in English, must contain a form of “to be” Examples: –Cate Sheller.
1 Math 306 Foundations of Mathematics I Math 306 Foundations of Mathematics I Goals of this class Introduction to important mathematical concepts Development.
Propositional Logic USEM 40a Spring 2006 James Pustejovsky.
Through the Looking Glass, 1865
Tweedledum: “I know what you’re thinking, but it isn’t so. No how.” Tweedledee: “Contrariwise, if it was so, it might be; and if it were so, it would be;
3.2 – Truth Tables and Equivalent Statements
TRUTH TABLES. Introduction Statements have truth values They are either true or false but not both Statements may be simple or compound Compound statements.
Logic ChAPTER 3.
Propositional Logic Review
The Foundations: Logic and Proofs
Intro to Discrete Structures
Chapter 1 Section 1.4 More on Conditionals. There are three statements that are related to a conditional statement. They are called the converse, inverse.
Section 1-4 Logic Katelyn Donovan MAT 202 Dr. Marinas January 19, 2006.
Course Outline Book: Discrete Mathematics by K. P. Bogart Topics:
CS 285- Discrete Mathematics Lecture 2. Section 1.1 Propositional Logic Propositions Conditional Statements Truth Tables of Compound Propositions Translating.
Chapter 1 The Logic of Compound Statements. Section 1.1 Logical Form and Logical Equivalence.
BY: MISS FARAH ADIBAH ADNAN IMK. CHAPTER OUTLINE: PART III 1.3 ELEMENTARY LOGIC INTRODUCTION PROPOSITION COMPOUND STATEMENTS LOGICAL.
Reason and Argument Chapter 6 (2/3). A symbol for the exclusive ‘or’ We will use ұ for the exclusive ‘or’ Strictly speaking, this connective is not necessary.
1 Propositional Logic Proposition 2 Propositions can be divided into simple propositions and compound propositions. A simple (or basic) proposition is.
MATH 102 Contemporary Math S. Rook
Chapter 5 – Logic CSNB 143 Discrete Mathematical Structures.
Logical Form and Logical Equivalence Lecture 2 Section 1.1 Fri, Jan 19, 2007.
Discrete Mathematics Lecture1 Miss.Amal Alshardy.
Predicate Logic. TRUTH-TABLE REMINDERS The problem people had the most trouble with was 1e: construct a truth-table for: (P & (~Q & R)) Many of you only.
Logic A: Capital punishment is immoral. B: No it isn’t! A: Yes it is! B: Well, what do you know about it? A: I know more about it then you do! B: Oh yeah?
CSNB143 – Discrete Structure LOGIC. Learning Outcomes Student should be able to know what is it means by statement. Students should be able to identify.
LOGIC Lesson 2.1. What is an on-the-spot Quiz  This quiz is defined by me.  While I’m having my lectures, you have to be alert.  Because there are.
Chapter 7 Logic, Sets, and Counting
Chapter 3: Semantics PHIL 121: Methods of Reasoning March 13, 2013 Instructor:Karin Howe Binghamton University.
Chapter 3: Introduction to Logic. Logic Main goal: use logic to analyze arguments (claims) to see if they are valid or invalid. This is useful for math.
MLS 570 Critical Thinking Reading Notes for Fogelin: Propositional Logic Fall Term 2006 North Central College.
Chapter 8 – Symbolic Logic Professor D’Ascoli. Symbolic Logic Because the appraisal of arguments is made difficult by the peculiarities of natural language,
Propositional Logic. Propositions Any statement that is either True (T) or False (F) is a proposition Propositional variables: a variable that can assume.
CS1022 Computer Programming & Principles Lecture 1 Logic and Proof.
Chapter 7 Logic, Sets, and Counting Section 1 Logic.
Logic. Statements, Connectives, and Quantifiers In symbolic logic, we only care whether statements are true or false – not their content. In logic, a.
Propositional Logic ITCS 2175 (Rosen Section 1.1, 1.2)
LOGIC.
Logical Form and Logical Equivalence Lecture 1 Section 1.1 Wed, Jan 12, 2005.
LOGIC AND QUANTIFIERS. INTRODUCTION Many algorithms and proofs use logical expressions such as: “IF p THEN q” or “If p1 AND p2, THEN q1 OR q2” Therefore.
Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth.
CSNB143 – Discrete Structure Topic 4 – Logic. Learning Outcomes Students should be able to define statement. Students should be able to identify connectives.
TRUTH TABLES. Introduction The truth value of a statement is the classification as true or false which denoted by T or F. A truth table is a listing of.
Joan Ridgway. If a proposition is not indeterminate then it is either true (T) or false (F). True and False are complementary events. For two propositions,
Sentential Logic.
Mathematics for Comter I Lecture 2: Logic (1) Basic definitions Logical operators Translating English sentences.
Outline Logic Propositional Logic Well formed formula Truth table
Section 1.1. Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: a) The Moon is made of green.
TRUTH TABLES Edited from the original by: Mimi Opkins CECS 100 Fall 2011 Thanks for the ppt.
CS104 The Foundations: Logic and Proof 1. 2 What is Discrete Structure?  Discrete Objects  Separated from each other (Opposite of continuous)  e.g.,
Chapter 1. Chapter Summary  Propositional Logic  The Language of Propositions (1.1)  Logical Equivalences (1.3)  Predicate Logic  The Language of.
Chapter 1 Logic and proofs
Logical Operators (Connectives) We will examine the following logical operators: Negation (NOT,  ) Negation (NOT,  ) Conjunction (AND,  ) Conjunction.
Logical functors and connectives. Negation: ¬ The function of the negation is to reverse the truth value of a given propositions (sentence). If A is true,
Presentation transcript:

Reason and Argument Chapter 6 (1/4)

Common misperceptions about logic: “…The science of Deduction and Analysis is one which can only be acquired by long and patient study, nor is life long enough to allow any mortal to attain the highest possible perfection in it.” From A Study in Scarlet

A joke: Sherlock Holmes and Dr. Watson go on a camping trip. After a good dinner and a bottle of wine, they retire for the night, and go to sleep. Some hours later, Holmes wakes up and nudges his faithful friend. "Watson, look up at the sky and tell me what you see." "I see millions and millions of stars, Holmes" replies Watson. "And what do you deduce from that?" Watson ponders for a minute. "Well, astronomically, it tells me that there are millions of galaxies and potentially billions of planets. Astrologically, I observe that Saturn is in Leo. Horologically, I deduce that the time is approximately a quarter past three. Meteorologically, I suspect that we will have a beautiful day tomorrow. Theologically, I can see that God is all powerful, and that we are a small and insignificant part of the universe. What does it tell you, Holmes?" Holmes is silent for a moment.

The punchline: "Watson, you idiot!" he says. "Someone has stolen our tent!"

Common misperceptions about logic: Typically, Spock said nothing about logic, per se. Whenever Spock would claim that something was or was not logical, he generally meant ‘rational’.

A note about the rules of logic: The rules of logic are not made up or stipulated, or even proved (though they can be derived from one another like the axioms of Euclidian geometry, and as with any axiomatic system, at least one axiom will always remain unproven) The rules of logic are discovered, and are lent force by the very fact that they’re obvious, otherwise we wouldn’t be able to call them rules of logic. We’ll start with the simplest rules: the rules for ‘and’

But first, Propositions: The textbook authors are (understandably) imprecise about talk of propositions. To wit: ‘John is Tall’ is not a proposition, just like ‘3’ is not a number.

Propositions ‘John is tall’ is a sentence that expresses the proposition that John is tall. ‘3’ is a numeral that expresses what we mean by the number 3. This is important because one should not get the idea that any sentence can express a proposition. To express a proposition, a sentence must be an example of a linguistic act.

Propositional Form and Substitution Instances p & q represents any two joined propositions. Though the rule in the book (p. 144) allows that different variables be replaced by the same proposition, for practical purposes we will never do this. Also contrary to the text, “Roses are red and violets are blue” does not represent a single proposition, but instead a conjunction of two of them. The 8th edition of the book inserts a justification for this based on an analogy to mathematics. My reply: logic, whatever it looks like, is not precisely math. We have good reasons to limit one proposition to one propositional variable and vice versa.

Something else about propositions: Propositions are bearers of truth-values. That means that any given proposition can have the property of being true or the property of being false, and all propositions have one or the other (which is why we insist on the linguistic act constraint) Does that mean that we must view truth as a black-and-white kind of thing? Well, yes, it does.

Got a problem with black and white Got a problem with black and white? Why don’t you tell me that to my face! Thought so…

Bearers of truth-value Since propositions are expressed by sentences that are meaningful, they reflect states of affairs. In other words, they reflect the way things are or are not. Take the proposition expressed by the sentence ‘John is tall’. The proposition is true if it is considered in a state of affairs in which John is tall and it is false if it is considered in a state of affairs in which John is not tall. Notice that whether we agree about the state of affairs is a different question.

How truth tables work: The leftmost columns are called reference columns and contain each individual propositional variable (or sentence), usually in alphabetical order. There is one remaining column for each connective (&, v, ~, →) used. Each row of a truth table corresponds to one possible state of affairs. Every possible state of affairs is represented on a truth table. The number of rows is 2n where n is the number of reference columns.

The truth table for ‘&’ p q p & q T F

Propositional versus nonpropositional conjunction: Exercise IV: 1. nonpropositional 2. nonpropositional 3. nonpropositional 4. propositional 5. propositional 6. nonpropositional 7. nonpropositional 8. either (ambiguous) 9. nonpropositional

Validity for ‘&’ conclusion premise p q p & q T F

How about this one? conclusion premise p q p & q T F

What about this? premise conclusion p q p & q T F

Notice: premise conclusion p q p & q T F

How about: premise conclusion p q p & q T F

So any substitution instances of the following will ALWAYS be valid. p & q p q q___

Exercise V 1. valid 2. not valid 3. valid (trivially) 4. valid 5. valid (though conversationally, a different meaning is implied) 6. nonpropositional, but valid (would require predicate logic to demonstrate)

Exercise VI 1. True 2. True 3. True

Exclusive vs. Inclusive ‘or’ Sometimes when a person says something of the form “p or q” they mean “p or q or both” and sometimes they mean “p or q and not both”. The former is an inclusive ‘or’ and the latter is exclusive. Most logicians default to the inclusive ‘or’. Some even claim that all uses of ‘or’ are inclusive, and it is conversational implication that makes some of them exclusive. In any case, it is important to examine cases where ‘or’ is used to determine which is which, because it will affect the validity of any argument that ‘or’ is used in.

Disjunction p q p v q T F

Negation It is tempting to say that “Smurfs are blue” and “Smurfs are not blue” are sentences that express two propositions. That is not the case. What is going on is that the same proposition is involved, and in one case the proposition is negated. If ‘s’ stands for “Smurfs are blue” and ‘~’ is our symbol for negation, then “Smurfs are not blue” is formalized as “~s”.

Be careful with Negation Sometimes ‘not’ is syntactically ambiguous. Translating ‘~’ as “it is not the case that…” can help to disentangle ambiguity. Be careful with opposites. “nobody owns Mars” is the negation of “somebody owns Mars” because “it is not the case that somebody owns Mars” means the same thing as “nobody owns Mars” However, some opposites are not binary. Consider “Cheering for the Yankees is moral”. The negation of this should just be “It is not the case that cheering for the Yankees is moral”. Resist the temptation to translate the negation as “Cheering for the Yankees is immoral”. This is because actions that are not moral could be either amoral or immoral (but not both). The point is, just be strict in translating ‘~’ as “it is not the case that…”

Further ambiguity in negation: Consider ~(Everyone loves running) Not everyone loves running Everyone does not love running Everyone loves not running No one loves running Everyone hates running Everyone loves walking For the sake of Pete, just say “It is not the case that everyone loves running”

Disjunctive Syllogism Consider the argument: p v q ~p q C P2 P1 p q ~p p v q T F

Disjunctive Syllogism Consider the argument: p v q ~p q VALID C P2 P1 p q ~p p v q T F

Consider the Argument: p v q p___ ~q P2 C P1 p q ~q p v q T F

Consider the Argument: p v q p___ ~q INVALID P2 C P1 p q ~q p v q T F

Pay attention to parentheses Notice that ~a & g means something different than ~(a & g). Substitute “Annie is rich” for ‘a’ and “Gina is happy” for ‘g’. The first phrase translates to “It is not the case that Annie is rich and it is the case that Gina is happy.” The second phrase translates to “It is not the case that both Annie is rich and Gina is happy.” How about ~a & ~g?

Logic and Math I know that logic LOOKS for all the world like math, but resist the temptation to treat mathematical symbols and logical symbols as interchangeable. For example, math has parentheses, and also has a negative symbol, “-” that looks a bit like logic’s negation symbol “~”, so since changing –(2 + 3) to -2 + -3 is a mathematically valid procedure, changing ~(p & q) to ~p & ~q should be logically valid, right?

Equivalence of ~a & g, ~(a & g), ~a & ~g T F

Exercise XII 15. A v ((~B & C) v ~(~B v ~(Z v B))) T v ((~T & T) v ~(~T v ~(F v T))) T v ((~T & T) v ~(~T v ~T)) T v ((F & T) v ~(F v F)) T v (F v ~F) T v (F v T) T v T T