CPS Bayesian games and their use in auctions

Slides:



Advertisements
Similar presentations
Yossi Sheffi Mass Inst of Tech Cambridge, MA ESD.260J/1.260J/15.
Advertisements

Bayesian games and their use in auctions
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Chapter 20 Violating Equivalence 1.Preferences for Risk 2.Asymmetric Valuations 3.Relaxing Independence 4.Differential Information 5.Collusion and Entry.
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
Private Information and Auctions. Auction Situations Private Value – Everybody knows their own value for the object – Nobody knows other peoples values.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Class 4 – Some applications of revenue equivalence
EC941 - Game Theory Prof. Francesco Squintani Lecture 4 1.
CPS Bayesian games and their use in auctions Vincent Conitzer
Strongly based on Slides by Vincent Conitzer of Duke
Auctions Auction types: –First price, sealed bid auction –Second price, sealed bid auction –English auction (ascending bid auction) –Dutch auction (descending.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Auction. Types of Auction  Open outcry English (ascending) auction Dutch (descending) auction  Sealed bid First-price Second-price (Vickrey)  Equivalence.
Auctions Ruth Tarrant. Classifying auctions What is the nature of the good being auctioned? What are the rules of bidding? Private value auction Common.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Game Theory 1. Game Theory and Mechanism Design Game theory to analyze strategic behavior: Given a strategic environment (a “game”), and an assumption.
Introduction to Game Theory
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
CPS Auctions & Combinatorial Auctions
Chapter 19 Equivalence Types of Auctions Strategic Equivalence
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Chapter 9 Games with Imperfect Information Bayesian Games.
CPS 173 Mechanism design Vincent Conitzer
© 2009 Institute of Information Management National Chiao Tung University Lecture Note II-3 Static Games of Incomplete Information Static Bayesian Game.
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
Games with Imperfect Information Bayesian Games. Complete versus Incomplete Information So far we have assumed that players hold the correct belief about.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Lecture 4 on Auctions Multiunit Auctions We begin this lecture by comparing auctions with monopolies. We then discuss different pricing schemes for selling.
1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAA A AA A.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
Bayesian games and mechanism design
Bayesian games and their use in auctions
Comp/Math 553: Algorithmic Game Theory Lecture 08
CPS Mechanism design Michael Albert and Vincent Conitzer
Economics 100C April 6, 2010.
Mechanism design with correlated distributions
Comp/Math 553: Algorithmic Game Theory Lecture 09
Tuomas Sandholm Computer Science Department Carnegie Mellon University
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Chapter 4 Bayesian Approximation
Comp/Math 553: Algorithmic Game Theory Lecture 13
Market Design and Analysis Lecture 4
Auction Seminar : Revenue Equivalence
Economics 100C.
Vincent Conitzer Mechanism design Vincent Conitzer
Auctions An auction is a mechanism for trading items by means of bidding. Dates back to 500 BC where Babylonians auctioned of women as wives. Position.
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Games with Imperfect Information Bayesian Games
Preference elicitation/ iterative mechanisms
Auctions Lirong Xia. Auctions Lirong Xia Sealed-Bid Auction One item A set of bidders 1,…,n bidder j’s true value vj bid profile b = (b1,…,bn) A sealed-bid.
CPS 173 Auctions & Combinatorial Auctions
CPS Preference elicitation/ iterative mechanisms
Bayes Nash Implementation
Information, Incentives, and Mechanism Design
Auction Theory תכנון מכרזים ומכירות פומביות
Vincent Conitzer CPS Mechanism design Vincent Conitzer
Class 2 – Revenue equivalence
Presentation transcript:

CPS 296.1 Bayesian games and their use in auctions Vincent Conitzer conitzer@cs.duke.edu

What is mechanism design? In mechanism design, we get to design the game (or mechanism) e.g. the rules of the auction, marketplace, election, … Goal is to obtain good outcomes when agents behave strategically (game-theoretically) Mechanism design often considered part of game theory 2007 Nobel Prize in Economics! Before we get to mechanism design, first we need to know how to evaluate mechanisms

Example: (single-item) auctions Sealed-bid auction: every bidder submits bid in a sealed envelope First-price sealed-bid auction: highest bid wins, pays amount of own bid Second-price sealed-bid auction: highest bid wins, pays amount of second-highest bid bid 1: $10 first-price: bid 1 wins, pays $10 second-price: bid 1 wins, pays $5 bid 2: $5 bid 3: $1

Which auction generates more revenue? Each bid depends on bidder’s true valuation for the item (utility = valuation - payment), bidder’s beliefs over what others will bid (→ game theory), and... the auction mechanism used In a first-price auction, it does not make sense to bid your true valuation Even if you win, your utility will be 0… In a second-price auction, (we will see later that) it always makes sense to bid your true valuation bid 1: $10 a likely outcome for the first-price mechanism a likely outcome for the second-price mechanism bid 1: $5 bid 2: $5 bid 2: $4 bid 3: $1 bid 3: $1 Are there other auctions that perform better? How do we know when we have found the best one?

Bidding truthfully is optimal in the Vickrey auction! What should a bidder with value v bid? Option 1: Win the item at price b, get utility v - b Would like to win if and only if v - b > 0 – but bidding truthfully accomplishes this! b = highest bid among other bidders Option 2: Lose the item, get utility 0 We say the Vickrey auction is strategy-proof

Collusion in the Vickrey auction Example: two colluding bidders v1 = first colluder’s true valuation v2 = second colluder’s true valuation price colluder 1 would pay when colluders bid truthfully gains to be distributed among colluders b = highest bid among other bidders price colluder 1 would pay if colluder 2 does not bid

Bayesian games In a Bayesian game a player’s utility depends on that player’s type as well as the actions taken in the game Notation: θi is player i’s type, drawn according to some distribution from set of types Θi Each player knows/learns its own type, not those of the others, before choosing action Pure strategy si is a mapping from Θi to Ai (where Ai is i’s set of actions) In general players can also receive signals about other players’ utilities; we will not go into this L R L R row player type 1 (prob. 0.5) U 4 6 2 column player type 1 (prob. 0.5) U 4 6 D D L R L R U row player type 2 (prob. 0.5) 2 4 column player type 2 (prob. 0.5) U 2 4 D D

Converting Bayesian games to normal form row player type 1 (prob. 0.5) U 4 6 2 column player type 1 (prob. 0.5) U 4 6 D D L R L R row player type 2 (prob. 0.5) U 2 4 column player type 2 (prob. 0.5) U 2 4 D D type 1: L type 2: L type 1: L type 2: R type 1: R type 2: L type 1: R type 2: R type 1: U type 2: U 3, 3 4, 3 4, 4 5, 4 4, 3.5 4, 4.5 2, 3.5 3, 4.5 3, 4 3, 5 exponential blowup in size type 1: U type 2: D type 1: D type 2: U type 1: D type 2: D

Bayes-Nash equilibrium A profile of strategies is a Bayes-Nash equilibrium if it is a Nash equilibrium for the normal form of the game Minor caveat: each type should have >0 probability Alternative definition: for every i, for every type θi, for every alternative action ai, we must have: Σθ-i P(θ-i) ui(θi, σi(θi), σ-i(θ-i)) ≥ Σθ-i P(θ-i) ui(θi, ai, σ-i(θ-i))

First-price sealed-bid auction BNE Suppose every bidder (independently) draws a valuation from [0, 1] What is a Bayes-Nash equilibrium for this? Say a bidder with value vi bids vi(n-1)/n Claim: this is an equilibrium! Proof: suppose all others use this strategy For a bid b < (n-1)/n, the probability of winning is (bn/(n-1))n-1, so the expected value is (vi-b)(bn/(n-1))n-1 Derivative w.r.t. b is - (bn/(n-1))n-1 + (vi-b)(n-1)bn-2(n/(n-1))n-1 which should equal zero Implies -b + (vi-b)(n-1) = 0, which solves to b = vi(n-1)/n

Analyzing the expected revenue of the first-price and second-price (Vickrey) auctions First-price auction: probability of there not being a bid higher than b is (bn/(n-1))n (for b < (n-1)/n) This is the cumulative density function of the highest bid Probability density function is the derivative, that is, it is nbn-1(n/(n-1))n Expected value of highest bid is n(n/(n-1))n∫(n-1)/nbndb = (n-1)/(n+1) Second-price auction: probability of there not being two bids higher than b is bn + nbn-1(1-b) This is the cumulative density function of the second-highest bid Probability density function is the derivative, that is, it is nbn-1 + n(n-1)bn-2(1-b) - nbn-1 = n(n-1)(bn-2 - bn-1) Expected value is (n-1) - n(n-1)/(n+1) = (n-1)/(n+1)

Revenue equivalence theorem Suppose valuations for the single item are drawn i.i.d. from a continuous distribution over [L, H] (with no “gaps”), and agents are risk-neutral Then, any two auction mechanisms that in equilibrium always allocate the item to the bidder with the highest valuation, and give an agent with valuation L an expected utility of 0, will lead to the same expected revenue for the auctioneer

(As an aside) what if bidders are not risk-neutral? Behavior in second-price/English/Japanese does not change, but behavior in first-price/Dutch does Risk averse: first price/Dutch will get higher expected revenue than second price/Japanese/English Risk seeking: second price/Japanese/English will get higher expected revenue than first price/Dutch

(As an aside) interdependent valuations E.g. bidding on drilling rights for an oil field Each bidder i has its own geologists who do tests, based on which the bidder assesses an expected value vi of the field If you win, it is probably because the other bidders’ geologists’ tests turned out worse, and the oil field is not actually worth as much as you thought The so-called winner’s curse Hence, bidding vi is no longer a dominant strategy in the second-price auction In English and Japanese auctions, you can update your valuation based on other agents’ bids, so no longer equivalent to second-price In these settings, English (or Japanese) > second-price > first-price/Dutch in terms of revenue

Expected-revenue maximizing (“optimal”) auctions [Myerson 81] Vickrey auction does not maximize expected revenue E.g. with only one bidder, better off making a take-it-or-leave-it offer (or equivalently setting a reserve price) Suppose agent i draws valuation from probability density function fi (cumulative density Fi) Bidder’s virtual valuation ψ(vi)= vi - (1 - Fi(vi))/fi(vi) Under certain conditions, this is increasing; assume this The bidder with the highest virtual valuation (according to his reported valuation) wins (unless all virtual valuations are below 0, in which case nobody wins) Winner pays value of lowest bid that would have made him win E.g. if all bidders draw uniformly from [0, 1], Myerson auction = second-price auction with reserve price ½

Vickrey auction without a seller ) = 2 v( ) = 4 v( ) = 3 pays 3 (money wasted!)‏

Can we redistribute the payment? Idea: give everyone 1/n of the payment v( ) = 2 v( ) = 4 v( ) = 3 receives 1 receives 1 pays 3 receives 1 not strategy-proof Bidding higher can increase your redistribution payment

Incentive compatible redistribution [Bailey 97, Porter et al Incentive compatible redistribution [Bailey 97, Porter et al. 04, Cavallo 06] Idea: give everyone 1/n of second-highest other bid v( ) = 2 v( ) = 4 v( ) = 3 receives 1 pays 3 receives 2/3 receives 2/3 2/3 wasted (22%)‏ Strategy-proof Your redistribution does not depend on your bid; incentives are the same as in Vickrey

Bailey-Cavallo mechanism… Bids: V1≥V2≥V3≥... ≥Vn≥0 First run Vickrey auction Payment is V2 First two bidders receive V3/n Remaining bidders receive V2/n Total redistributed: 2V3/n+(n- 2)V2/n R1 = V3/n R2 = V3/n R3 = V2/n R4 = V2/n ... Rn-1= V2/n Rn = V2/n Is this the best possible?

Another redistribution mechanism Bids: V1≥V2≥V3≥V4≥... ≥Vn≥0 First run Vickrey Redistribution: Receive 1/(n-2) * second- highest other bid, - 2/[(n-2)(n-3)] third-highest other bid Total redistributed: V2-6V4/[(n-2)(n-3)] R1 = V3/(n-2) - 2/[(n-2)(n-3)]V4 R2 = V3/(n-2) - 2/[(n-2)(n-3)]V4 R3 = V2/(n-2) - 2/[(n-2)(n-3)]V4 R4 = V2/(n-2) - 2/[(n-2)(n-3)]V3 ... Rn-1= V2/(n-2) - 2/[(n-2)(n-3)]V3 Rn = V2/(n-2) - 2/[(n-2)(n-3)]V3 Idea pursued further in Guo & Conitzer 07 / Moulin 07