Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein,

Slides:



Advertisements
Similar presentations
Volume 86, Issue 4, Pages (April 2004)
Advertisements

Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Effect of Trehalose on a Phospholipid Membrane under Mechanical Stress
Hydroxide and Proton Migration in Aquaporins
Vishwanath Jogini, Benoît Roux  Biophysical Journal 
Ion Permeation through a Narrow Channel: Using Gramicidin to Ascertain All-Atom Molecular Dynamics Potential of Mean Force Methodology and Biomolecular.
Volume 83, Issue 3, Pages (September 2002)
Molecular Dynamics Simulation Analysis of Membrane Defects and Pore Propensity of Hemifusion Diaphragms  Manami Nishizawa, Kazuhisa Nishizawa  Biophysical.
Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities  Masataka Oikawa, Yoshiteru Yonetani 
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Theory and Simulation of Water Permeation in Aquaporin-1
Composition Fluctuations in Lipid Bilayers
Volume 90, Issue 4, Pages (February 2006)
Volume 85, Issue 2, Pages (August 2003)
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Volume 95, Issue 6, Pages (September 2008)
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Volume 113, Issue 11, Pages (December 2017)
Volume 87, Issue 4, Pages (October 2004)
S.W. Chiu, Eric Jakobsson, R. Jay Mashl, H. Larry Scott 
Coarse-Grained Molecular Dynamics Simulations of Phase Transitions in Mixed Lipid Systems Containing LPA, DOPA, and DOPE Lipids  Eric R. May, Dmitry I.
Ion Counting from Explicit-Solvent Simulations and 3D-RISM
Volume 93, Issue 2, Pages (July 2007)
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Dániel Szöllősi, Gergely Szakács, Peter Chiba, Thomas Stockner 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Mounir Tarek, Bernard Maigret, Christophe Chipot  Biophysical Journal 
Volume 89, Issue 4, Pages (October 2005)
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 102, Issue 9, Pages (May 2012)
Volume 92, Issue 1, Pages L07-L09 (January 2007)
Marcos Sotomayor, Klaus Schulten  Biophysical Journal 
Sunhwan Jo, Joseph B. Lim, Jeffery B. Klauda, Wonpil Im 
Molecular Dynamics Study of the KcsA Potassium Channel
Sundeep S. Deol, Peter J. Bond, Carmen Domene, Mark S.P. Sansom 
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Interfacial Properties of High-Density Lipoprotein-like Lipid Droplets with Different Lipid and Apolipoprotein A-I Compositions  Artturi Koivuniemi, Marko.
Allison N. Dickey, Roland Faller  Biophysical Journal 
Allison Dickey, Roland Faller  Biophysical Journal 
Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
M. Müller, K. Katsov, M. Schick  Biophysical Journal 
Cholesterol Translocation in a Phospholipid Membrane
Coupled Motions between Pore and Voltage-Sensor Domains: A Model for Shaker B, a Voltage-Gated Potassium Channel  Werner Treptow, Bernard Maigret, Christophe.
Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate  Sergei Grudinin,
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Ion-Induced Defect Permeation of Lipid Membranes
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes
Karina Kubiak, Wieslaw Nowak  Biophysical Journal 
Volker Knecht, Helmut Grubmüller  Biophysical Journal 
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Matthieu Chavent, Elena Seiradake, E. Yvonne Jones, Mark S.P. Sansom 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 111, Issue 9, Pages (November 2016)
Molecular Dynamics Simulation of a Synthetic Ion Channel
Presentation transcript:

Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein, Daphna Scharf  Biophysical Journal  Volume 78, Issue 2, Pages 800-811 (February 2000) DOI: 10.1016/S0006-3495(00)76637-9 Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 1 Panels of two orthogonal views, (XZ) and (YZ), of instantaneous configurations taken from the MD simulation. (a) Initial setup; (b) after 200ps NVT run; (c) after 0.7ns NPT run; (d) after 1.4ns NPT run; (e) final configuration after 2ns of NPT run. In (a), the yellow-orange spheres indicate the location of the halothane molecule centers of mass. In (b)–(e), halothane molecules are rendered with atomic van der Waals radii (F, orange; Cl, light green; Br, dark green; H, gray); the lipid acyl chains and the water molecules are shown in a ball-and-stick representation. The lipid P, N, and O atoms are displayed with covalent radii in green, blue, and red, respectively. Hydrogen atoms along the lipid acyl chains have been removed for clarity. The configurations (a)–(e) are all drawn on the same scale. Due to the periodic boundary condition the halothane molecule found in the water in (d) appears in the bottom of (e). Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 1 Panels of two orthogonal views, (XZ) and (YZ), of instantaneous configurations taken from the MD simulation. (a) Initial setup; (b) after 200ps NVT run; (c) after 0.7ns NPT run; (d) after 1.4ns NPT run; (e) final configuration after 2ns of NPT run. In (a), the yellow-orange spheres indicate the location of the halothane molecule centers of mass. In (b)–(e), halothane molecules are rendered with atomic van der Waals radii (F, orange; Cl, light green; Br, dark green; H, gray); the lipid acyl chains and the water molecules are shown in a ball-and-stick representation. The lipid P, N, and O atoms are displayed with covalent radii in green, blue, and red, respectively. Hydrogen atoms along the lipid acyl chains have been removed for clarity. The configurations (a)–(e) are all drawn on the same scale. Due to the periodic boundary condition the halothane molecule found in the water in (d) appears in the bottom of (e). Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 2 Electron density profiles along the bilayer normal, Z, averaged over the last 1.5ns of the NPT trajectory. The contribution from the halothane molecules has been enhanced by a factor of 2 for clarity. Inset: initial halothane electron density distribution before (circles) and after NVT equilibration (dashed line) and final distribution (solid line). Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 3 The center of mass position as a function of time for four of the halothane molecules projected onto the bilayer normal direction, Z. Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 4 (a) Average deuterium acyl chain segment order parameters (SCD) for halothane mol fraction of 50% (solid circles) compared with SCD for the DPPC Lα phase (line), and for the low halothane concentration, 6.5mol % (open circles). (b) Relative order parameters, R, as a function of the segment position for a mol fraction of 50% halothane. A value >1.0 indicates an increase, a value <1.0 indicates a decrease in the segment order parameter. Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 5 Selective electron density profiles for a mol fraction of 50% halothane in DPPC along the bilayer normal direction, Z, averaged over the last 1.5ns of the NPT trajectory. (a) The overall profile, the water, and the pure DPPC contributions; (b) the choline N(CH3)3 contributions; (c) PO4 contributions; (d) the C&z.dbnd;O contributions averaged over the two distinct acyl chains. Shown are results for the neat Lα phase of DPPC (solid lines), plus halothane at mol fraction of 6.5% (dashed lines) and mol fraction of 50% (long-dashed lines). Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 6 Electron density profiles along the bilayer normal, Z, for different carbon atoms of the lipid chains: (a) the neat Lα phase of DPPC and (b) DPPC with halothane at a mol fraction of 50%. For nomenclature see Büldt et al. (1979). Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 7 The orientation distribution of the lipid headgroup P-N dipole with respect to the bilayer normal direction, Z. The DPPC Lα phase is shown in a solid line, halothane mol fraction of 6.5% in a dashed line, and halothane mol fraction of 50% in a long-dashed line. Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 8 Radial distribution functions, g(r), for the oxygen atom of the water molecules around the phospholipid headgroup and glycerol ester carbonyl carbon atoms (C21 and C31), current study in long dashed lines, compared to data for the neat Lα phase of DPPC, solid lines, and to halothane mol fraction of 6.5%, dashed lines. (a) N of the choline, (b) C21 and (c) C31 atoms. Notice the difference in scale between (a) and the others. Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 9 Electrostatic potential difference relative to the bilayer center computed from the simulations with 6.5mol % halothane (dashed line), 50mol % (long-dashed line), and neat Lα phase of DPPC (solid line): (a) total; (b) individual contributions from water and DPPC molecules. Biophysical Journal 2000 78, 800-811DOI: (10.1016/S0006-3495(00)76637-9) Copyright © 2000 The Biophysical Society Terms and Conditions