Newton’s Divided Difference Polynomial Method of Interpolation

Slides:



Advertisements
Similar presentations
Newton’s Divided Difference Polynomial Method of Interpolation
Advertisements

1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
Differentiation-Discrete Functions
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
10/11/ Differentiation-Discrete Functions Chemical Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
1 Interpolation. 2 What is Interpolation ? Given (x 0,y 0 ), (x 1,y 1 ), …… (x n,y n ), find the value of ‘y’ at a.
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 INTERPOLASI. Direct Method of Interpolation 3 What is Interpolation ? Given (x 0,y 0 ), (x 1,y 1 ), …… (x n,y n ), find the value of ‘y’ at a value.
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Introduction to Numerical Methods Mathematical Procedures
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Interpolation.
Differentiation-Discrete Functions
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
INTERPOLASI.
Binary Representation
Newton’s Divided Difference Polynomial Method of Interpolation
Binary Representation
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Reading Between the Lines
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Lagrangian Interpolation
Presentation transcript:

Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method of Interpolation http://numericalmethods.eng.usf.edu

What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu

Interpolants Evaluate Differentiate, and Integrate. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate. http://numericalmethods.eng.usf.edu

Newton’s Divided Difference Method Linear interpolation: Given pass a linear interpolant through the data where http://numericalmethods.eng.usf.edu

Figure. Velocity vs. time data Example The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for linear interpolation. Table. Velocity as a function of time 10 227.04 15 362.78 20 517.35 22.5 602.97 30 901.67 Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

Linear Interpolation http://numericalmethods.eng.usf.edu

Linear Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation http://numericalmethods.eng.usf.edu

Figure. Velocity vs. time data Example The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for quadratic interpolation. Table. Velocity as a function of time 10 227.04 15 362.78 20 517.35 22.5 602.97 30 901.67 Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

General Form where Rewriting http://numericalmethods.eng.usf.edu

General Form http://numericalmethods.eng.usf.edu

General form http://numericalmethods.eng.usf.edu

Figure. Velocity vs. time data Example The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for cubic interpolation. Table. Velocity as a function of time 10 227.04 15 362.78 20 517.35 22.5 602.97 30 901.67 Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

Example The velocity profile is chosen as we need to choose four data points that are closest to http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Example http://numericalmethods.eng.usf.edu

Comparison Table http://numericalmethods.eng.usf.edu

Distance from Velocity Profile Find the distance covered by the rocket from t=11s to t=16s ? http://numericalmethods.eng.usf.edu

Acceleration from Velocity Profile Find the acceleration of the rocket at t=16s given that http://numericalmethods.eng.usf.edu

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END http://numericalmethods.eng.usf.edu