S.A. Shkulipa, W.K. den Otter, W.J. Briels  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
Advertisements

A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Temperature Control Methods in a Laser Tweezers System
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle  Naoto Yagi, Hiroyuki Iwamoto, Katsuaki Inoue 
Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells  Valeria Levi, QiaoQiao Ruan, Enrico Gratton 
Hydration Force in the Atomic Force Microscope: A Computational Study
Molecular Dynamics Simulations of the Lipid Bilayer Edge
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Dynamics of Active Semiflexible Polymers
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
Volume 112, Issue 7, Pages (April 2017)
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Apparent Subdiffusion Inherent to Single Particle Tracking
Volume 85, Issue 2, Pages (August 2003)
Volume 95, Issue 6, Pages (September 2008)
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Volume 95, Issue 2, Pages (July 2008)
Mesoscale Simulation of Blood Flow in Small Vessels
Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded.
Volume 103, Issue 4, Pages (August 2012)
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
Y. Qiao, P. Galvosas, P.T. Callaghan  Biophysical Journal 
Volume 89, Issue 3, Pages (September 2005)
Nucleotide Effects on the Structure and Dynamics of Actin
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Confinement-Dependent Friction in Peptide Bundles
Volume 95, Issue 5, Pages (September 2008)
Volume 90, Issue 8, Pages (April 2006)
Microscopic Mechanism of Antibiotics Translocation through a Porin
Volume 88, Issue 5, Pages L30-L32 (May 2005)
Mesoscopic Modeling of Bacterial Flagellar Microhydrodynamics
Volume 93, Issue 2, Pages (July 2007)
Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane  Michele.
Volume 96, Issue 5, Pages (March 2009)
Volume 95, Issue 11, Pages (December 2008)
Yihua Zhao, Shu Chien, Sheldon Weinbaum  Biophysical Journal 
Allison N. Dickey, Roland Faller  Biophysical Journal 
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy  Laurent Bozec, Michael Horton  Biophysical.
M. Müller, K. Katsov, M. Schick  Biophysical Journal 
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
L. Stirling Churchman, Henrik Flyvbjerg, James A. Spudich 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
P. Müller-Buschbaum, R. Gebhardt, S.V. Roth, E. Metwalli, W. Doster 
Effects of Monovalent Anions of the Hofmeister Series on DPPC Lipid Bilayers Part II: Modeling the Perpendicular and Lateral Equation-of-State  E. Leontidis,
Volume 111, Issue 4, Pages (August 2016)
Energetics of Inclusion-Induced Bilayer Deformations
Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate  Sergei Grudinin,
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Robust Driving Forces for Transmembrane Helix Packing
Volume 91, Issue 2, Pages (July 2006)
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
Volume 101, Issue 11, Pages (December 2011)
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
John E. Pickard, Klaus Ley  Biophysical Journal 
Volume 95, Issue 7, Pages (October 2008)
Volume 88, Issue 6, Pages (June 2005)
Energetics of Inclusion-Induced Bilayer Deformations
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
Maxwell Henderson, Brigita Urbanc, Luis Cruz  Biophysical Journal 
Crowding Effects on Association Reactions at Membranes
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
The Stochastic Dynamics of Filopodial Growth
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Huan Lei, George Em Karniadakis  Biophysical Journal 
Presentation transcript:

Surface Viscosity, Diffusion, and Intermonolayer Friction: Simulating Sheared Amphiphilic Bilayers  S.A. Shkulipa, W.K. den Otter, W.J. Briels  Biophysical Journal  Volume 89, Issue 2, Pages 823-829 (August 2005) DOI: 10.1529/biophysj.105.062653 Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 1 A snapshot of the bilayer-liquid simulation box. The number of surrounding solvent particles has been reduced for clarity. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 2 Side views of the simulated system, highlighting parallel (left) and perpendicular (right) shear flows. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 3 The surface viscosity of the bilayer, derived from simulations with a perpendicular shear flow, plotted against the applied shear rate. The data points were obtained by calculating the total shear force on the system, i.e., the first term on the right hand of Eq. 5, from the pressure (•) or from the thermostat (■). Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 4 Sketch of the velocity profile (line) and of the forces (arrows) for a bilayer system under parallel shear. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 5 Velocity profile of a bilayer system at a parallel shear rate of 0.03 τ−1. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 6 Probability distributions of displacements, along the flow direction, of head particles in the top (right peak) and bottom (left peak) monolayers. At a shear rate of 0.03 τ−1, the amphiphiles cover a distance of nearly three box lengths over a period of ∼18,000 τ. The solid lines are Gaussian fits. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 7 The friction coefficient of sliding monolayers, as a function of the slip velocity. Slip velocities were calculated from Eq. 7 (■) and from the average displacements in Fig. 6 (•). The arrow denotes the effective friction coefficient ξ′ of a slab of t5 molecules with the same thickness as the bilayer (see text for details). Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 8 Histogram of the orientation of amphiphilic molecules in the plane of the bilayer. The solid line refers to a quiescent system, the dotted line to a parallel shear rate of 0.05τ−1. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 9 Probability distribution of the tilt of the amphiphiles in the flow direction. The solid line refers to a quiescent system, the dotted line to a parallel shear rate of 0.05τ−1. Biophysical Journal 2005 89, 823-829DOI: (10.1529/biophysj.105.062653) Copyright © 2005 The Biophysical Society Terms and Conditions