M. Yamauchi1, A. Schillings1,2, R. Slapak3, H. Nilsson1, I. Dandouras3

Slides:



Advertisements
Similar presentations
Mass composition of the escaping plasma at Mars Ella Carlsson IRF Kiruna Supervisors: Professor Sverker Fredriksson, LTU Professor Stas Barabash, IRF Ella.
Advertisements

Locations of Boundaries of the Outer and Inner Radiation Belts during the Recent Solar Minimum, as Observed by Cluster and Double Star Natalia Ganushkina.
아리랑 위성 1 호 (KOMPSAT-1) 궤도 변화와 우주환경 변화 비교 박진영 1,2, 문용재 2, 조경석 2, 김해동 3, 김관혁 2, 김연한 2, 박영득 2, 이유 1 1 충남대학교, 2 한국천문연구원, 3 한국항공우주연구원 한국우주과학회 춘계 학술대회 2005.
Fine-scale 3-D Dynamics of Critical Plasma Regions: Necessity of Multipoint Measurements R. Lundin 1, I. Sandahl 1, M. Yamauchi 1, U. Brändström 1, and.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
The role of solar wind energy flux for transpolar arc luminosity A.Kullen 1, J. A. Cumnock 2,3, and T. Karlsson 2 1 Swedish Institute of Space Physics,
Weaker Solar Wind Over the Protracted Solar Minimum Dave McComas Southwest Research Institute San Antonio, TX With input from and thanks to Heather Elliott,
Sudden appearance of sub- keV structured ions in the inner magnetosphere within one hour: drift simulation M. Yamauchi 1, Y. Ebihara 2, I. Dandouras 3,
Anti-parallel versus Component Reconnection at the Magnetopause K.J. Trattner Lockheed Martin Advanced Technology Center Palo Alto, CA, USA and the Polar/TIMAS,
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
1 Grades 3 - 5: Introduction. 2 Better Observation Of The Sun And Earth Importance of Space Technology.
In-situ Observations of Collisionless Reconnection in the Magnetosphere Tai Phan (UC Berkeley) 1.Basic signatures of reconnection 2.Topics: a.Bursty (explosive)
Cusp O+ H+ e- "SPI" event #1 event #2 MLT energy ratio = 15~20 O+ H+ 68°CGLat66°CGLat 63°CGLat #1) Mono-energetic ion injection with O+ faster.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G.
Hot He + events in the inner magnetosphere observed by Cluster M. Yamauchi 1, I. Dandouras 2, H. Reme 2, H. Nilsson 1 (1) Swedish Institute of Space Physics.
Oxygen Injection Events observed by Freja Satellite M. Yamauchi 1, L. Eliasson 1, H. Nilsson 1, R. Lundin 1, and O. Norberg 2 1.Swedish Institute of Space.
Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star Natalia Ganushkina (1, 2), Iannis Dandouras (3), Yuri.
M. Yamauchi 1, H. Nilsson 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, Y. Ebihara 4 (1) Swedish Institute of Space Physics (IRF), Kiruna, Sweden (2) CNRS.
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
Authors: S. Beyene1, C. J. Owen1, A. P. Walsh1, A. N. Fazakerley1, E
Simultaneous in-situ observations of the feature of a typical FTE by Cluster and TC1 Zhang Qinghe Liu Ruiyuan Polar Research Institute of China
Understanding the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team EANA-2012 (P4.30, ) (1) Swedish.
Substorm-origin sub-keV ring current ions: wedge-like structure ICS-9, Graz, ~7 Substorm : production of plasma Sub-keV ring current : fossil of.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Morphology of Inner Magnetospheric low- energy ions M. Yamauchi 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, L.M. Kister 4, F. Mazouz 5, Y. Ebihara 6 (1)
Storm-dependent Radiation Belt Dynamics Mei-Ching Fok NASA Goddard Space Flight Center, USA Richard Horne, Nigel Meredith, Sarah Glauert British Antarctic.
Swedish Institute of Space Physics, Kiruna M. Yamauchi 1 Different Sun-Earth energy coupling between different solar cycles Acknowledgement:
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
Richard Thorne / UCLA Physical Processes Responsible for Relativistic Electron Variability in the Outer Radiation Zone over the Solar Cycle 1 Outline 2.
R. Maggiolo 1, M. Echim 1,2, D. Fontaine 3, A. Teste 4, C. Jacquey 5 1 Belgian Institute for Space Aeronomy (IASB-BIRA); 2 Institute.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Source and seed populations for relativistic electrons: Their roles in radiation belt changes A. N. Jaynes1, D. N. Baker1, H. J. Singer2, J. V. Rodriguez3,4.
1. What controls the occurrence of reconnection. 2
Post-Cluster: Need for a mission to understand Nitrogen in space
The Ionosphere and Thermosphere GEM 2013 Student Tutorial
Mass-loading effect in the exterior cusp and plasma mantle
Solar Wind and CMEs with the Space Weather Modeling Framework
M. Yamauchi1, I. Dandouras2, H. Reme2,
Sub-keV Phenomena of Dayside Ring Current
Oxygen Injection Events observed by Freja Satellite
Source Location of the Wedge-like Dispersed (sub-keV) Ring Current in the Morning Sector During a Substorm M. Yamauchi (IRF-Kiruna), P.C. Brandt, Y. Ebihara,
M. Yamauchi1, H. Nilsson1, R. Lundin1, I. Dandouras2, H. Reme2, H
The ionosphere is much more structured and variable than ever predicted. Solar Driven Model Since 2000, we have seen more, very clear evidence that the.
The Wakes and Magnetotails of Venus and Mars
1G. Nicolaou, 1M. Yamauchi, 1,2H. Nilsson, 1M. Wieser, 3A. Fedorov, 1D
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
Effects of Dipole Tilt Angle on Geomagnetic Activities
Sources of < 10 keV ring current ions: supply mechanism?
Extreme Events In The Earth’s Electron Radiation Belts
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
Solar Activity and Space Weather
Nitrogen and Oxygen Budget ExpLoration (NOBEL)
Yama's works Using geomagnetic data
Strong Pitch Angle Scattering and the Kennel-Petschek Limit
Energy conversion boundaries
The properties of CMEs embedded in extreme solar wind
Grades 3 - 5: Introduction
Mars, Venus, The Moon, and Jovian/Saturnian satellites
Fate of outflowing ions from the Earth's ionosphere: current knowledge and remaining questions Part 2 M. Yamauchi.
Swedish Institute of Space Physics (IRF), Kiruna
Oxygen Lifetimes at Europa
Grades 3 - 5: Introduction
M. Yamauchi1, A. Schillings1,2, T. Sergienko1, C. -F. Enell3, R
M. Yamauchi1, T. Sergienko1, C. -F. Enell2, A. Schillings1, R
Past cusp researches: (potentially) missing facts
Presentation transcript:

M. Yamauchi1, A. Schillings1,2, R. Slapak3, H. Nilsson1, I. Dandouras3 Erosion of Earth's atmosphere by ion escape: observations, a consistent model, and implications to the atmospheric evolution M. Yamauchi1, A. Schillings1,2, R. Slapak3, H. Nilsson1, I. Dandouras3 1. IRF, Kiruna, Sweden 2. LTU, Kiruna, Sweden 3. EISCAT HQ, Kiruna, Sweden 4. IRAP, U. Toulouse/CNRS, Toulouse, France

Key Point (1) Slapak et al. (2017): O+ Loss Rate from the Earth for Kp < 7 : Floss µ exp(0.45*Kp)  ∫Floss ≈ 1018 kg ≈ atmospheric O2 (2) Yamauchi and Slapak (2018): (a) Mass loading of these O+ extracts solar wind kinetic energy: ∆E µ (mO/mH)·(nO/nH) ~ substantial µ Floss·vSW2 where Floss is the total O+ flux into the solar wind. (b) Positive feedback between ∆E into the ionosphere and O+ energization by ∆E  non-linear Kp dependence (3) Schillings et al. (2017): For large Kp ≥ 7+ (ancient condition) : Floss (and ∆E) >> prediction by exp(0.45*Kp)  O+ escape can no longer be ignored in the evolution of the atmosphere

(1) O+ escape vs. Kp: Cluster/CIS Cluster could distinguish (a) loss to the space (b) flowing into the magnetotail

Cluster/CIS hot O+ obs. of direct escape ??? Kp≥8 1026 1025 ~ 0.7x1025 s-1 1024 O+ Loss Rate : Floss µ exp(0.45*Kp) R Cluster/CIS: 2001 – 2005 (Slapak et al., 2017) ~ 2x1025 s-1 Kp # samples X

(2) Feedback from escaping ions VO+ increases while VH+ decreases  Mass loading  inelastic momentum conservation  Extraction of kinetic energy

(2a) Energy extraction by O+ mass-loading ≠ 0 (1) Momentum conservation in the –x direction: ∆P = (ρ+dρ)·(v+dv)2 – ρu2 = 0 and dFloss (O+ supply from –z) plays as dρ  dρ/ρ ≈ (dFloss/dx)·dx/ρv·S (2) "inelastic" mixing means ∆E = (ρ+dρ)·(v+dv)3/2 - ρu3/2 < 0  ∆E (extracted energy) ≈ Floss·vSW2/4 total O+ mass flux: Floss (3) Amount is substantial: nO+/nSW~0.01  rO+/rSW~0.16  extract 7% of kinetic energy E  ∆E ≈ 109-10 W to J// through B

If "ionosphere" is connected to mass-loading region finite s⊥ (∑P) If ∑P = ∞, charges are canceled & E = 0 If ∑P = 0, charges cause E = -UxB If ∑P = finite, E = finite & IP·∑P = finite µ ∆E

(2b) Combine with feedback to ion escape Energy to ionosphere by mass-load: ∆E µ Floss·vSW2 Assume escape µ energy loss in the ionosphere: Floss µ ∆E  Positive feedback ! Add two empirical relations (1) Ion Loss Rate (Cluster): Floss µ exp(0.45*Kp) (2) Kp and VSW : VSW µ 135·(Kp+1.2)  ∆E µ Kp2 · exp(0.45*Kp)

(3) Non-linearity for Kp>7 example: Halloween event (2003-10-29) O+ energy H+ O+ (>0.3 keV) pitch angle O+ (<0.3 keV)

(3) Non-linearity for Kp>7 example: Halloween event (2003-10-29) entire 2003 Flux after scaling to the ionosphere Reference: 1-year data in the same region 2003-10-29  higher than extrapolation

(3) Non-linearity for Kp>7 Examined 6 “extreme” events Dates VSW(km/s) NSW (cm-3) Dst [nT] Kp 2001-3-31 ~ 720 38 -387 9- 2001-4-12 4.4 -271 7+ 2003-5-30 ~ 810 52 -144 2003-10-29 (2000 ?) -350 9 2004-11-7 ~ 700 90 -117 8 2004-11.10 ~ 790 18 -259

(3) Non-linearity for Kp>7 Shift of median flux (a) Southern hemisphere x 47 x 50 x 10 x 18

(3) Non-linearity for Kp>7 Shift of median flux (b) Northern hemisphere x 20 x 6 x 9 x 60 x 83 x 18

(3) Non-linearity for Kp>7 The O+ outflow during major storms is 1 to 2 orders of magnitude higher than during less disturbed time

Summary and Conclusion (1) Slapak et al. (2017): Ion Loss Rate from the Earth for Kp < 7 : Floss µ exp(0.45*Kp)  ∫Floss ≈ 1018 kg ≈ atmospheric O2 (2) Yamauchi and Slapak (2017): Extraction of Solar Wind kinetic energy by mass loading : ∆E µ Floss·vSW2  ∆E µ Kp2·exp(0.45*Kp) , for Kp < 7 (3) Schillings et al. (2017): However, for large Kp ≥ 7+ (condition of ancient time) Floss (and ∆E) >> prediction by exp(0.45*Kp)  ∫F >> 1018 kg (atmospheric O2 and N2)  O+ escape can no longer be ignored in the evolution of the atmosphere

Future direction Need to understand expansion and escape of neutral atmosphere too.  ESCAPE mission (oral later)

End / extra slides

EISCAT (VHF) observation of September 2017 event. Vi X-flare CME = outflow CME = aurora

ne 2017-9-07 CME = aurora Magnetometer Bx Riometer 2000 nT Riometer pulsating magnetometer < 5 Hz ne EISCAT VHF (Tromsø)

Feedback from escaping ions Extraction of kinetic energy: ∆E Simple conservation laws:  ∆E µ F · vSW2, but nothing else Since F µ ionospheric current µ ∆E  Positive feedback between ∆E µ F · vSW2 & F µ exp(0.45*Kp)  ∆E µ Kp2 · exp(0.45*Kp) , for Kp<6 & IMF BY effect can be explained

2nd step: Plot the boxes and look at the plasma beta Method 2nd step: Plot the boxes and look at the plasma beta 29 Oct 2003 Halloween event

Method Year 2003 3rd step: Check the plasma beta parameter for the O+ outflow during the year Scaled O+ flux log10 m-2s-1 Number of data points Log10 plasma beta