The Relational Model Chapter 3

Slides:



Advertisements
Similar presentations
Logical DB Design: ER to Relational Entity sets to tables. Employees ssn name lot CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER, PRIMARY.
Advertisements

Relational Database. Relational database: a set of relations Relation: made up of 2 parts: − Schema : specifies the name of relations, plus name and type.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
SQL Lecture 10 Inst: Haya Sammaneh. Example Instance of Students Relation  Cardinality = 3, degree = 5, all rows distinct.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke. Edited by Keith Shomper, The Relational Model Chapter 3.
CSC 411/511: DBMS Design 1 1 Dr. Nan WangCSC411_L3_Relational Model 1 The Relational Model (Chapter 3)
Database Management Systems 1 Raghu Ramakrishnan The Relational Model Chapter 3 Instructor: Mirsad Hadzikadic.
The Relational Model Class 2 Book Chapter 3 Relational Data Model Relational Query Language (DDL + DML) Integrity Constraints (IC) (From ER to Relational)
SPRING 2004CENG 3521 The Relational Model Chapter 3.
The Relational Model 198:541 Rutgers University. Why Study the Relational Model?  Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle,
1 Relational Model. 2 Relational Database: Definitions  Relational database: a set of relations  Relation: made up of 2 parts: – Instance : a table,
The Relational Model Lecture 3 Book Chapter 3 Relational Data Model Relational Query Language (DDL + DML) Integrity Constraints (IC) From ER to Relational.
1 Data Modeling Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
ER to Relational Mapping. Logical DB Design: ER to Relational Entity sets to tables. CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER,
1 The Relational Model Chapter 3. 2 Objectives  Representing data using the relational model.  Expressing integrity constraints on data.  Creating,
The Relational Model These slides are based on the slides of your text book.
The Relational Model Chapter 3
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
The Relational Model. Review Why use a DBMS? OS provides RAM and disk.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3 Modified by Donghui Zhang.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model  Vendors: IBM, Informix, Microsoft, Oracle, Sybase  Recent.
 Relational database: a set of relations.  Relation: made up of 2 parts: › Instance : a table, with rows and columns. #rows = cardinality, #fields =
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
1 The Relational Model. 2 Why Study the Relational Model? v Most widely used model. – Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc. v “Legacy.
FALL 2004CENG 351 File Structures and Data Management1 Relational Model Chapter 3.
ICS 321 Fall 2009 The Relational Model (ii) Asst. Prof. Lipyeow Lim Information and Computer Science Department University of Hawaii at Manoa 9/10/20091Lipyeow.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
The Relational Model Content based on Chapter 3 Database Management Systems, (Third Edition), by Raghu Ramakrishnan and Johannes Gehrke. McGraw Hill, 2003.
CMPT 258 Database Systems The Relationship Model PartII (Chapter 3)
Lecture 3 Book Chapter 3 (part 2 ) From ER to Relational.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 3 The Relational Model.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
The Relational Model Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Database Management Systems 1 Raghu Ramakrishnan The Relational Model Chapter 3 Instructor: Jianping Fan.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
1 CS122A: Introduction to Data Management Lecture #5 (E-R  Relational, Cont.) Instructor: Chen Li.
1 CS122A: Introduction to Data Management Lecture #4 (E-R  Relational Translation) Instructor: Chen Li.
Database Management Systems 1 Raghu Ramakrishnan The Relational Model Chapter 3 Instructor: Xin Zhang.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Multi-billion dollar industry, $15+ bill in  Vendors:
CENG 351 File Structures and Data Management1 Relational Model Chapter 3.
Logical DB Design: ER to Relational
COP Introduction to Database Structures
These slides are based on the slides of your text book.
The Relational Model Lecture 3 INFS614, Fall
Translation of ER-diagram into Relational Schema
The Relational Model Chapter 3
From ER to Relational Model
Database Systems (資料庫系統)
The Relational Model Content based on Chapter 3
The Relational Model Chapter 3
The Relational Model Relational Data Model
The Relational Model CMU SCS /615 C. Faloutsos – A. Pavlo
The Relational Model Chapter 3
Translation of ER-diagram into Relational Schema
The Relational Model The slides for this text are organized into chapters. This lecture covers Chapter 3. Chapter 1: Introduction to Database Systems Chapter.
Database Systems (資料庫系統)
More on ER Model and the Relationship Model
The Relational Model Chapter 3
The Relational Model Content based on Chapter 3
The Entity-Relationship Model
The Relational Model Content based on Chapter 3
Presentation transcript:

The Relational Model Chapter 3 Instructor: Xintao Wu The slides for this text are organized into several modules. Each lecture contains about enough material for a 1.25 hour class period. (The time estimate is very approximate--it will vary with the instructor, and lectures also differ in length; so use this as a rough guideline.) This lecture is the second of two in Module (1). Module (1): Introduction (DBMS, Relational Model) Module (2): Storage and File Organizations (Disks, Buffering, Indexes) Module (3): Database Concepts (Relational Queries, DDL/ICs, Views and Security) Module (4): Relational Implementation (Query Evaluation, Optimization) Module (5): Database Design (ER Model, Normalization, Physical Design, Tuning) Module (6): Transaction Processing (Concurrency Control, Recovery) Module (7): Advanced Topics Raghu Ramakrishnan 1

Publications Frequently cited db publications Publication resources ER model by P.P. Chen (1976) Relation model by E.F.Codd(1970) Publication resources DBLP Google Scholar CSRankings SIGMOD Record Raghu Ramakrishnan

Relational Database: Definitions Relational database: a set of relations. Relation: made up of 2 parts: Instance : a table, with rows and columns. #rows = cardinality, #fields = degree / arity Schema : specifies name of relation, plus name and type of each column. E.g. Students(sid: string, name: string, login: string, age: integer, gpa: real) Can think of a relation as a set of rows or tuples. (i.e., all rows are distinct) Raghu Ramakrishnan 3

Example Instance of Students Relation Cardinality = 3, degree = 5 , all rows distinct Do all columns in a relation instance have to be distinct? Raghu Ramakrishnan 4

Relational Query Languages A major strength of the relational model: supports simple, powerful querying of data. Queries can be written intuitively, and the DBMS is responsible for efficient evaluation. The key: precise semantics for relational queries. Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change. SELECT S.name, E.cid, E.grade FROM Students S, Enrolled E WHERE S.sid=E.sid AND S.age >18 AND E.ID=‘ITCS6160' Raghu Ramakrishnan 9

The SQL Query Language Developed by IBM (system R) in the 1970s Need for a standard since it is used by many vendors Standards: SQL-86 SQL-89 (minor revision) SQL-92 (major revision, current standard) SQL-99 (major extensions) Raghu Ramakrishnan

Creating Relations in SQL Creates the Students relation. Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified. As another example, the Enrolled table holds information about courses that students take. CREATE TABLE Students (sid CHAR(20), name CHAR(20), login CHAR(10), age INTEGER, gpa REAL) CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2)) Raghu Ramakrishnan 15

Destroying and Altering Relations DROP TABLE Students Destroys the relation Students. The schema information and the tuples are deleted. ALTER TABLE Students ADD COLUMN firstYear: integer The schema of Students is altered by adding a new field; every tuple in the current instance is extended with a null value in the new field. Raghu Ramakrishnan 16

Adding and Deleting Tuples Can insert a single tuple using: INSERT INTO Students (sid, name, login, age, gpa) VALUES (53699, 'Green ', 'green@ee', 18, 3.5) More inserts: INSERT INTO Students (sid, name, login, age, gpa) VALUES (53666, 'Jones', 'jones@cs', 18, 3.4) VALUES (53688, 'Smith ', 'smith@eecs', 18, 3.2) VALUES (53650, 'Smith ', 'smith@math', 18, 3.5) Raghu Ramakrishnan 10

Adding and Deleting Tuples (continued) Students relation after inserts: sid name login age gpa 53666 Jones jones@cs 18 3.4 53688 Smith smith@eecs 3.2 53650 smith@math 19 3.8 53600 Green green@ee 3.5 Raghu Ramakrishnan 10

Adding and Deleting Tuples (continued) Can delete all tuples satisfying some condition (e.g., name = Smith): DELETE FROM Students S WHERE S.name = 'Smith' Students instance after delete: sid name login age gpa 53666 Jones jones@cs 18 3.4 53600 Green green@ee 3.5 Raghu Ramakrishnan 10

The SQL Query Language To find all 18 year old students, we can write: SELECT * FROM Students S WHERE S.age=18 To find just names and logins, replace the first line: SELECT S.name, S.login from Students S Raghu Ramakrishnan

Adding and Deleting Tuples (continued) Insert tuples into the Enrolled instance: INSERT INTO Enrolled (sid, cid, grade) VALUES ('53831', 'Carnatic 101', 'C') VALUES ('53831', 'Reggae 203', 'B') VALUES ('53650', 'Topology 112', 'A') VALUES ('53666', 'History 105', 'B') Raghu Ramakrishnan 10

Querying Multiple Relations What does the following query compute? SELECT S.name, E.cid FROM Students S, Enrolled E WHERE S.sid=E.sid AND E.grade='B' Given the following instance of Enrolled (is this possible if the DBMS ensures referential integrity?): we get: S.name E.cid Jones History 105 Raghu Ramakrishnan

Integrity Constraints (ICs) IC: condition that must be true for any instance of the database; e.g., domain constraints. ICs are specified when schema is defined. ICs are checked when relations are modified. A legal instance of a relation is one that satisfies all specified ICs. DBMS should not allow illegal instances. If the DBMS checks ICs, stored data is more faithful to real-world meaning. Avoids data entry errors, too! Raghu Ramakrishnan 5

Primary Key Constraints A set of fields is a key for a relation if : 1. No two distinct tuples can have same values in all key fields, and 2. This is not true for any subset of the key. Part 2 false? A superkey. If there’s >1 key for a relation, one of the keys is chosen (by DBA) to be the primary key. E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a superkey. Raghu Ramakrishnan 6

Primary and Candidate Keys in SQL Possibly many candidate keys (specified using UNIQUE), one of which is chosen as the primary key. CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid) ) “For a given student and course, there is a single grade.” vs. “Students can take only one course, and receive a single grade for that course; further, no two students in a course receive the same grade.” Used carelessly, an IC can prevent the storage of database instances that arise in practice! CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid), UNIQUE (cid, grade) ) Raghu Ramakrishnan 6

Primary and Candidate Keys in SQL (continued) For Students relation with SID as the primary key CREATE TABLE Students (sid CHAR(20), name CHAR(20), login CHAR(10), age INTEGER, gpa REAL, PRIMARY KEY (sid) ) Are there any separate fields or combinations of fields which also are candidates for primary key? How about login? How about age? How about age & gpa? Raghu Ramakrishnan 6

Foreign Keys, Referential Integrity Foreign key : Set of fields in one relation that is used to `refer’ to a tuple in another relation. (Must correspond to primary key of the second relation.) Like a `logical pointer’. E.g. sid is a foreign key referring to Students: Enrolled(sid: string, cid: string, grade: string) If all foreign key constraints are enforced, referential integrity is achieved, i.e., no dangling references. Can you name a data model w/o referential integrity? Links in HTML! Raghu Ramakrishnan 7

Foreign Keys in SQL Only students listed in the Students relation should be allowed to enroll for courses. CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students ) Enrolled Students Raghu Ramakrishnan 7

Foreign Keys in SQL (continued) Creates the customer information relation CREATE TABLE Customer_Info (name CHAR(20), addr CHAR(40), phone CHAR(10), email char (40), PRIMARY KEY (name, addr)) Now create the bank account relation with a foreign key CREATE TABLE Bank_Acct (acct CHAR (4), name CHAR (20), address char (40), balance REAL, PRIMARY KEY (acct) , Foreign Key (name, address) references Customer_Info) Raghu Ramakrishnan 7

Foreign Key Can a foreign key refer to the same relation? Example Each student may have a partner who must be also a student. How about a student who does not have partner? NULL introduced here. Raghu Ramakrishnan

Enforcing Referential Integrity Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students. What should be done if an Enrolled tuple with a non-existent student id is inserted? (Reject it!) What should be done if a Students tuple is deleted? Also delete all Enrolled tuples that refer to it. Disallow deletion of a Students tuple that is referred to. Set sid in Enrolled tuples that refer to it to a default sid. (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, denoting `unknown’ or `inapplicable’.) Similar if primary key of Students tuple is updated. Raghu Ramakrishnan 13

Referential Integrity in SQL/92 SQL/92 supports all 4 options on deletes and updates. Default is NO ACTION (delete/update is rejected) CASCADE (also delete all tuples that refer to deleted tuple) SET NULL / SET DEFAULT (sets foreign key value of referencing tuple) CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE ON UPDATE SET DEFAULT ) Raghu Ramakrishnan 14

Where do ICs Come From? ICs are based upon the semantics of the real-world enterprise that is being described in the database relations. We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at an instance. An IC is a statement about all possible instances! From example, we know name is not a key, but the assertion that sid is a key is given to us. Key and foreign key ICs are the most common; more general ICs supported too. Raghu Ramakrishnan

Views A view is just a relation, but we store a definition, rather than a set of tuples. CREATE VIEW YoungActiveStudents (name, grade) AS SELECT S.name, E.grade FROM Students S, Enrolled E WHERE S.sid = E.sid and S.age<21 Views can be dropped using the DROP VIEW command. How to handle DROP TABLE if there’s a view on the table? DROP TABLE command has options to let the user specify this. Raghu Ramakrishnan 18

View CREATE VIEW Goodstudents(sid, gpa) as select S.sid, S.gpa from Students S where S.gpa> 3.0 How about the following: INSERT into S VALUES(“100”,”JONE”,3.2) INSERT into S VALUES(“101”, ”Mike”,2.8 ) DELETE from S where S.id = “100” INSERT into GS VALUES(“111”, 3.2) INSERT into GS VALUES(“112”, 2.8) DELETE from GS where S.id = “111” Raghu Ramakrishnan

Views and Security Views can be used to present necessary information (or a summary), while hiding details in underlying relation(s). Given YoungStudents, but not Students or Enrolled, we can find students s who have are enrolled, but not the cid’s of the courses they are enrolled in. Raghu Ramakrishnan 22

Logical DB Design: ER to Relational Entity sets to tables. Employees ssn name lot The slides for this text are organized into several modules. Each lecture contains about enough material for a 1.25 hour class period. (The time estimate is very approximate--it will vary with the instructor, and lectures also differ in length; so use this as a rough guideline.) This covers Lectures 1 and 2 (of 6) in Module (5). Module (1): Introduction (DBMS, Relational Model) Module (2): Storage and File Organizations (Disks, Buffering, Indexes) Module (3): Database Concepts (Relational Queries, DDL/ICs, Views and Security) Module (4): Relational Implementation (Query Evaluation, Optimization) Module (5): Database Design (ER Model, Normalization, Physical Design, Tuning) Module (6): Transaction Processing (Concurrency Control, Recovery) Module (7): Advanced Topics CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn)) Raghu Ramakrishnan 3

Relationship Sets to Tables CREATE TABLE Works_In( ssn CHAR(1), did INTEGER, since DATE, PRIMARY KEY (ssn, did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments) In translating a relationship set to a relation, attributes of the relation must include: Keys for each participating entity set (as foreign keys). This set of attributes forms a superkey for the relation. All descriptive attributes. Raghu Ramakrishnan 5

Review: Key Constraints since lot name ssn dname Each dept has at most one manager, according to the key constraint on Manages. did budget Manages Employees Departments Translation to relational model? 1-to-1 1-to Many Many-to-1 Many-to-Many Raghu Ramakrishnan 6

Translating ER Diagrams with Key Constraints CREATE TABLE Manages( ssn CHAR(11), did INTEGER, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments) Map relationship to a table: Note that did is the key now! Separate tables for Employees and Departments. Since each department has a unique manager, we could instead combine Manages and Departments. CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11), since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees) Raghu Ramakrishnan 7

Review: Participation Constraints Does every department have a manager? If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!) since since name name dname dname ssn lot did did budget budget Employees Manages Departments Works_In Raghu Ramakrishnan since 8

Participation Constraints in SQL We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints). CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11) NOT NULL, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE NO ACTION) Raghu Ramakrishnan 9

Review: Weak Entities A weak entity can be identified uniquely only by considering the primary key of another (owner) entity. Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities). Weak entity set must have total participation in this identifying relationship set. name cost ssn pname lot age Employees Policy Dependents Raghu Ramakrishnan 10

Translating Weak Entity Sets Weak entity set and identifying relationship set are translated into a single table. When the owner entity is deleted, all owned weak entities must also be deleted. CREATE TABLE Dep_Policy ( pname CHAR(20), age INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (pname, ssn), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE) Raghu Ramakrishnan 11

Review: ISA Hierarchies name Review: ISA Hierarchies ssn lot Employees hourly_wages hours_worked ISA As in C++, or other PLs, attributes are inherited. If we declare A ISA B, every A entity is also considered to be a B entity. contractid Hourly_Emps Contract_Emps Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed) Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) Raghu Ramakrishnan 12

Translating ISA Hierarchies to Relations General approach: 3 relations: Employees, Hourly_Emps and Contract_Emps. Hourly_Emps: Every employee is recorded in Employees. For hourly emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked, ssn); must delete Hourly_Emps tuple if referenced Employees tuple is deleted). Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes. Alternative: Just Hourly_Emps and Contract_Emps. Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked. Each employee must be in one of these two subclasses. Raghu Ramakrishnan 13

Review: Binary vs. Ternary Relationships name Employees ssn lot pname age If each policy is owned by just 1 employee: Key constraint on Policies would mean policy can only cover 1 dependent! What are the additional constraints in the 2nd diagram? Covers Dependents Bad design Policies policyid cost name Employees ssn lot pname age Dependents Purchaser Beneficiary Better design policyid cost Policies Raghu Ramakrishnan 7

Binary vs. Ternary Relationships (Contd.) CREATE TABLE Policies ( policyid INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (policyid). FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE) The key constraints allow us to combine Purchaser with Policies and Beneficiary with Dependents. Participation constraints lead to NOT NULL constraints. CREATE TABLE Dependents ( pname CHAR(20), age INTEGER, policyid INTEGER, PRIMARY KEY (pname, policyid). FOREIGN KEY (policyid) REFERENCES Policies, ON DELETE CASCADE) Raghu Ramakrishnan 8

Relational Model: Summary A tabular representation of data. Simple and intuitive, currently the most widely used. Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations. Two important ICs: primary and foreign keys In addition, we always have domain constraints. Powerful and natural query languages exist. Rules to translate ER to relational model Raghu Ramakrishnan 15