How OAM Identified in Overlay Protocols draft-mirsky-rtgwg-oam-identify Greg Mirsky IETF-104 March 2019, Prague.

Slides:



Advertisements
Similar presentations
BIER Ping IETF 92 draft-kumarzheng-bier-ping-00
Advertisements

Computer Networks20-1 Chapter 20. Network Layer: Internet Protocol 20.1 Internetworking 20.2 IPv IPv6.
Network Layer Packet Forwarding IS250 Spring 2010
1 Computer Networks IP: The Internet Protocol. 2 IP is a connection-less, unreliable network layer protocol IP provides best effort services in the sense.
Transition Mechanisms for Ipv6 Hosts and Routers RFC2893 By Michael Pfeiffer.
Generic Overlay OAM and Datapath Failure Detection
IETF SFC: Service Chain Header draft-zhang-sfc-sch-01
NVO3 dataplane encapsulation requirements discussion Erik Nordmark, Arista Networks.
MPLS over L2TPv3 Encapsulation IETF VersionIHLTOSTotal length IdentificationFlagsFragment offset TTL Protocol ==
NVO3 Overlay P2MP Ping draft-xia-nvo3-overlay-p2mp-ping-00 Liang Xia, Weiguo Hao, Greg Mirsky July 2014 Toronto.
Network Service Header (NSH) draft-quinn-sfc-nsh IETF 89 A. Chauhan Citrix U. Elzur Intel B. McConnell Rackspace C. Wright Red Hat Inc. P. Quinn J. Guichard.
Generic Overlay OAM and Datapath Failure Detection Kanwar Singh (Nuage Networks) Pradeep Jain, Florin Balus Nuage Networks Wim Henderickx Alcatel-Lucent,
A Fragmentation Strategy for Generic Routing Encapsulation (GRE)
Network Virtualization Overlays (NVO3) Working Group IETF 97, November 2016, Seoul Chairs: Secretary: Sam Aldrin Matthew Bocci.
Requirements for LER Forwarding of IPv4 Option Packets
UDP Encapsulation for IP Tunneling
Connecting MPLS-SPRING Islands over IP Networks
On-demand Continuity Check (CC) and Connectivity Verification(CV) for OverlayNetworks draft-ooamdt-rtgwg-demand-cc-cv-01 Greg Mirsky Erik Nordmark Nagendra.
IP - The Internet Protocol
MPLS-TP Fault Management Draft draft-boutros-mpls-tp-fault-01
IETF 94 Yokohama BFD YANG Model and LIME
GRE-in-UDP Encapsulation
draft-xu-isis-nvo-cp-00 Xiaohu Xu (Huawei) Saumya Dikshit (Cisco)
Advertising Encapsulation Capability Using OSPF
Overlay OAM Design Team Report
IPv6 Router Alert Option for MPLS OAM
IP - The Internet Protocol
Multi-layer OAM for SFC Networks draft-wang-sfc-multi-layer-oam-09
Performance measurement with the alternate marking method in SFC draft-mirsky-sfc-pmamm-01 Greg Mirsky Giuseppe Fioccola
Guide to TCP/IP Fourth Edition
Greg Mirsky IETF-99 July 2017, Prague
A Unified Approach to IP Segment Routing
Greg Mirsky Jeff Tantsura Mach Chen Ilya Varlashkin
Greg Mirsky Erik Nordmark Nagendra Kumar Deepak Kumar Mach Chen
{Stewart Bryant, Mach Huawei
Robert Moskowitz, Verizon
NVO3 Data Plane Discussion
BFD Directed Return Path draft-ietf-mpls-bfd-directed-07
Robert Moskowitz, Verizon
Xiaohu Xu (Huawei) Stewart Bryant (Huawei) Hamid Assarpour (Broadcom)
IETF 100, November 2017 Singapore
Chapter 15. Internet Protocol
BFD for VXLAN draft-spallagatti-bfd-vxlan
Simple Two-way Active Measurement Protocol (STAMP): base protocol and data model draft-mirsky-ippm-stamp draft-mirsky-ippm-stamp-yang Greg Mirsky
Comparing draft-ietf-mpls-sfc and draft-malis-mpls-sfc-encapsulation
Consideration of IPv6 Encapsulation for Path Services draft-li-6man-ipv6-sfc-ifit-00 Zhenbin Li, Shuping Peng.
Network Virtualization Overlays (NVO3) Working Group IETF 100, November 2017, Singapore Chairs: Secretary: Sam Aldrin Matthew.
PW Control Word Stitching
IETF 103 Bangkok, Thailand - November 2018
draft-guichard-sfc-nsh-sr-02
An MPLS-Based Forwarding Plane for Service Function Chaining
Return Path in SFC OAM
IETF BIER, November 2017, Singapore
Extended BFD draft-mirmin-bfd-extended
OAM for Deterministic Networks with IP Data Plane draft-mirsky-detnet-ip-oam Greg Mirsky Mach Chen IETF-105 July 2019, Montreal.
IPv6 Encapsulation for IOAM - Enhancement of IPv6 Extension Headers draft-li-6man-ipv6-sfc-ifit-01 draft-li-6man-enhanced-extension-header-00 Zhenbin.
BIER in IPv6 draft-zhang-bier-bierin6-03
OAM for Deterministic Networks with MPLS Data Plane draft-mirsky-detnet-mpls-oam Greg Mirsky Mach Chen IETF-105 July 2019, Montreal.
PW Control Word Stitching
Active OAM in Geneve draft-mmbb-nvo3-geneve-oam
Quan Xiong(ZTE) Gregory Mirsky(ZTE) Chang Liu(China Unicom)
draft-ietf-bier-ipv6-requirements-01
OAM for Deterministic Networks draft-mirsky-detnet-oam
Data plane round-table Feedback
Editors: Bala’zs Varga, Jouni Korhonen
Bidirectional Forwarding Detection (BFD) for EVPN Ethernet Segment Failover Use Case draft-zwm-bess-es-failover-00 BESS WG IETF104# Prague Sandy Zhang.
IETF BIER, November 2018, Bangkok
DetNet Data Plane Solutions draft-ietf-detnet-dp-sol-ip-02  draft-ietf-detnet-dp-sol-mpls-02  Bala’zs Varga, Jouni Korhonen, Janos Farkas, Lou Berger,
IESG LC: BFD for VXLAN draft-ietf-bfd-vxlan
E. Bellagamba, Ericsson P. Sköldström, Acreo D. Ward, Juniper
Presentation transcript:

How OAM Identified in Overlay Protocols draft-mirsky-rtgwg-oam-identify Greg Mirsky IETF-104 March 2019, Prague

Problem statement How to achieve unambiguous identification of OAM? Active OAM uses specifically constructed packets – test packets. Fault Management and Performance Monitoring (‘F’ and ‘P’ in FCAPS) Single-ended vs. dual-ended, e.g., ping vs. BFD in Async mode Two-way vs. one-way, e.g., Echo request/reply vs. BFD in Demand mode Hybrid OAM, according to RFC 7799, is an OAM method that combines properties of passive and active measurement methods: Alternate Marking method triggers measurement In-situ OAM triggers measurement, collects and transports the measurement results, network state information, a.k.a. telemetry information, in the data packet itself The Hybrid Two-Step method collects and transports the telemetry information on-path in a follow-up packets Overlay network protocols use: encapsulations that support optional meta-data, i.e., variable size headers (Geneve, SFC NSH, GUE) encapsulations that use fixed-size headers (BIER, VXLAN-GPE)

SFC NSH and Active OAM RFC 8300 Network Service Header: O bit: Setting this bit indicates an OAM packet. draft-ietf-sfc-multi-layer-oam : O bit: Setting this bit indicates an OAM command and/or data in the NSH Context Header or packet payload. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | V | Msg Type | Flags | Length | ~ SFC Active OAM Control Packet ~

O bit and the Next Protocol interpretation I O bit set, and the Next Protocol value is not one of identifying active or hybrid OAM protocol (per [RFC7799] definitions), e.g., defined in this specification Active SFC OAM - a Fixed-Length Context Header or Variable-Length Context Header(s) contain OAM command or data, and the type of payload determined by the Next Protocol field 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver|1|U| TTL | Length |U|U|U|U|MD Type| MPLS | | Service Path Identifier | Service Index | | | | Fixed-Length Context Header (OAM) | |Ver|1|U| TTL | Length |U|U|U|U|MD Type| IPv4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+----- | Metadata Class = OAM | Type |U| Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Variable-Length Metadata | Variable +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Length | | Context ~ ~ Headers | | |

O bit and the Next Protocol interpretation II O bit set, and the Next Protocol value is one of identifying active or hybrid OAM protocol - the payload that immediately follows SFC NSH contains OAM command or data; 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver|1|U| TTL | Length |U|U|U|U|MD Type| Active SFC OAM| | Service Path Identifier | Service Index | | | | Fixed-Length Context Header | | V | Msg Type | Flags | Length | ~ SFC Active OAM Control Packet ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+----- | Metadata Class != OAM | Type |U| Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Variable-Length Metadata | Variable +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Length | | Context ~ ~ Headers | | |

O bit and the Next Protocol interpretation III O bit is clear - no OAM in a Fixed-Length Context Header or Variable-Length Context Header(s) and the payload determined by the value of the Next Protocol field; 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver|0|U| TTL | Length |U|U|U|U|MD Type| MPLS | | Service Path Identifier | Service Index | | | | Fixed-Length Context Header | |Ver|0|U| TTL | Length |U|U|U|U|MD Type| IPv4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+----- | Metadata Class != OAM | Type |U| Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Variable-Length Metadata | Variable +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Length | | Context ~ ~ Headers | | |

O bit and the Next Protocol interpretation IV O bit is clear and the Next Protocol value is one of identifying active or hybrid OAM protocol MUST be identified and reported as the erroneous combination. An implementation MAY have control to enable processing of the OAM payload. For example, in case the Fixed-Length Context Header being used: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver|0|U| TTL | Length |U|U|U|U|MD Type| Active SFC OAM| | Service Path Identifier | Service Index | | | | Fixed-Length Context Header | | Ethernet frame | … the recommendation to avoid combination of OAM in a Fixed-Length Context Header or Variable- Length Context Header(s) and in the payload immediately following the SFC NSH because there is no unambiguous way to identify such combination using the O bit and the Next Protocol field.

Overlay Tunnels and OAM draft-ietf-nvo3-geneve: Definition of O bit has changed: s/OAM packet/Control packet/ O (1 bit): Control packet. This packet contains a control message. Control messages are sent between tunnel endpoints. Tunnel Endpoints MUST NOT forward the payload and transit devices MUST NOT attempt to interpret it. Since these are infrequent control messages, it is RECOMMENDED that tunnel endpoints direct these packets to a high priority control queue (for example, to direct the packet to a general purpose CPU from a forwarding ASIC or to separate out control traffic on a NIC). Transit devices MUST NOT alter forwarding behavior on the basis of this bit, such as ECMP link selection. draft-ietf-intarea-gue: C-bit provides the separate namespace to “carry formatted data that are implicitly addressed to the decapsulator to monitor or control the state or behavior of a tunnel. … The payload is interpreted as a control message with type specified in the proto/ctype field. The format and contents of the control message are indicated by the type and can be variable length.”

Fixed-size header and OAM RFC 8296 4 Encapsulation for BIER in MPLS and Non-MPLS Networks: OAM packet identified by the value of the Next Protocol field. IANA BIER Next Protocol Identifiers registry includes the identifier for OAM (5). draft-ietf-nvo3-vxlan-gpe (expired): OAM Flag Bit (O bit): The O bit is set to indicate that the packet is an OAM packet.

Next steps Non-IP encapsulation of OAM packets over MPLS underlay Your comments, suggestions, questions always welcome and greatly appreciated WG adoption? (May not need to publish but it may serve to reflect on the discussion)