Evolution of the Flower Chapter 20

Slides:



Advertisements
Similar presentations
HortBotany Lesson Plan #9
Advertisements

Flowering Plants - Angiosperms
FLOWERS Notes for Biology 2410* at Utah State University
Examining Flowers and Fruits
Evolution of Angiosperms
The sexual reproductive structures of angiosperms
Life on Earth Kingdom Plantae
Ch.8 Plants.
Chapter 24: Plant Reproduction and response
Classify Which plant structures are male sexual organs and which are female sexual organs Apply Concepts Relate the characteristics of angiosperms reproduction.
Plant Overview and Reproduction Pre-AP Biology. 2 What Is a Plant? Members of the kingdom Plantae Plants are multicellular eukaryotes Plants have cell.
ANGEOSPERMS. GENERAL CHARACTERISTICS Enclose their seed in masses of tissue = fruit – Fruit protects and aids in the distribution of seeds Their xylem.
Plant Reproduction Chapter 31.
Ferns that are pretty. Chapter 30 Reading Quiz 1.An embryo packaged with a food supply and a protective coat is a … 2.What is the transfer of pollen.
The Plant Kingdom: Seed Plants
Evolution of Angiosperms Archaefructus sinensis Controversy over when this first appeared Best bet is 125 MYA No sepals or petals, just stamens.
Range Plants -- OBJ 1: PPT
Flowers, Fruits, and Seeds
Flowers and Their Evolution
Reproduction in Angiosperms
Flowers n Monocots. Flowers n -veins in most are parallel.
SEED PLANTS II The Flowering Plants (Anthophyta).
Land Plants – The Angiosperms Characteristics of Angiosperms Are the most widespread land plants Comprised of 250,000 to 400,000 known species.
Fig. 8.7.
Flowering Plants.
Vascular Seed Plants Angiosperms.
Chapter 30 Plant Diversity: The Evolution of Seed Plants.
CHAPTER 30 PLANT DIVERSITY II: THE EVOLUTION OF SEED PLANTS Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section C1: Angiosperms.
Flowers and Their Evolution Spring Flower = a short, determinate shoot bearing highly modified leaves, some of which are fertile (i.e., bearing.
ANGIOSPERMS FLOWERING PLANTS  EVOLUTIONARY ADVANTAGES  1.Seed production  2.Seed dispersal  3.Broad leafs-loose leaves  4.Root modified for storage.
CHAPTER 38 PLANT REPRODUCTION AND BIOTECHNOLOGY Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section A1: Sexual Reproduction.
Earth’s dominant plants
I. Seed Plants A. Seed 1. plant embryo (sporophyte) 2. durable coat - water tight 3. stored energy source 4. adaptation for terrestrial life (meets these.
Ch. 30/ Plant Diversity II: The Evolution of Seed Plants.
Plant Reproduction Chapter 31. Plants and Pollinators Pollen had evolved by 390 million years ago Pollen had evolved by 390 million years ago Sperm packed.
Chapter 20 REPRODUCTION OF FLOWERING PLANTS. A. Asexual Reproduction Parent plant produces progeny that are genetically identical to it and to each other.
Chapter 8 Section 4 Angiosperms.
Pollination Occurs when pollen reaches the stigma
Fruits, Flowers, and Seeds. Fruit Classification Aggregate Aggregate Develop from a single flower with many ovaries Develop from a single flower with.
Chapter 8 Lecture Outline Flowers, Fruits, and Seeds Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Plant Structure, Growth, & Development. The Diversity of Angiosperms Angiosperms (flowering plants) can be divided into 2 major categories:  Monocots.
FLOWERS FRUITS AND SEEDS. STRUCTURE OF FLOWER  Stalk supporting the flower  Peduncle.
Angiosperms Angiosperms are the most diverse and geographically most widespread plants Have flowers and fruits with seeds Two classes: 1. Monocotyledones.
Angiosperm Reproduction
Plants Day 3.
Evolution of Seed Plants
Flowers, Fruits, and Seeds
School of Sciences, Lautoka Campus BIO509 Botany Lecture 18: Angiosperms Photo courtesy of Prof. Randy Thaman.
ANGIOSPERMS & GYMNOSPERMS
Angiosperm Evolution and Diversity
ANGIOSPERMS & GYMNOSPERMS
Review From Thursday What is one difference between an angiosperm and a gymnosperm? What organism did plants most likely evolve from? What is the name.
Lecture #13 Date ________
Chapter 20 Evolution of the Angiosperms.
Angiosperms: Flowering plants
Plant Structure, Growth, & Development
CHAPTER 30 PLANT DIVERSITY II: THE EVOLUTION OF SEED PLANTS
Chapter 38 Angiosperm Reproduction and Biotechnology
Flowers.
Plant Structure and Function
Plant Anatomy and Physiology
Flowering Plant Introduction and Reproduction
Angiosperms (estimated 257,400 angiosperm species in 13,678 genera)
Plant Reproduction Ch 7.
Plant reproduction Review.
Notes: Vascular Seed Plants
Lecture Ch. 30 ______ Chapter 30 ~ Plant Diversity II: The Evolution of Seed Plants.
Plant Structure, Growth, & Development
Plants (Flowers, Fruits and Seeds)
Presentation transcript:

Evolution of the Flower Chapter 20

Two classes - Monocotyledons and Dicotyledons Distinctive reproductive feature - carpels Angiosperms enclose their seeds in structures known as carpels, instead of lying naked on the scales of a strobilus as in gymnosperms. Hence the name "angiosperm" which means "seed in vessel".

Review of Flower Structure Flowers are reproductive structures that are formed from four sets of modified leaves on a shortened stem. In other words, the flower is a modified strobilus. Sepals - protect floral parts in the bud Petals - attract pollinators Stamens - anthers and filaments Carpels - stigma, style, and ovary (collection of carpels referred to as a pistil) The carpel is a unique structure found only in angiosperms.

The ovary wall forms a fruit to help disperse the seeds Cut into the pistil and you will see one or more tiny chambers, each chamber holding one or more sporangia on tiny stalks. These sporangia are the ovules - each carpel can hold one or several ovules Ovules in the ovary develop into seeds The ovary wall forms a fruit to help disperse the seeds There is an amazing diversity of floral structures. Linnaeus used these differences to classify plants.

Evolution of the Carpel Goethe, German writer, philosopher, and (in his spare time) noted botanist, proposed in 1790 that carpels evolved from leaves. Chambers in the pistil were probably formed from a sporophyll - a fertile leaf bearing ovules. Sporophyll had ovules (modified sporangia) on its outer edges. Edges of the leaf folded over and fused together to form a protective chamber - the carpel.

Pistils probably formed by the fusion of several carpels along the midrib of the modified leaves. Goethe's "foliar theory of the carpel" is still the best hypothesis for explaining the evolution of the carpel.

Derived Features of Angiosperms Leaves with finely divided venation Complex xylem - incl. vessels and parenchyma Complex phloem - sieve tube elements w/companion cells Herbaceous habit - rapid life cycle (some angios) Ovary to protect ovules ("seeds in vessels") Double fertilization and formation of triploid endosperm

Bisexual Flowers – microsporangia and megasporangia in same strobilus Advanced pollination syndromes - insects, birds, etc. Fruits to protect and diserse seeds Extreme diversity in secondary metabolism

Origin of the Angiosperms Darwin called the origin of the angiosperms an "abominable mystery". The evolution of angiosperms remains a mystery to this day, although great progress has been made in recent years solving this mystery using a combination of fossil evidence, molecular data, and the discovery of the primitive angiosperm Amborella. Flowering plants evolved sometime during the Cretaceous, approximately 140 million years ago, while the dinosaurs were at their peak.

However, no fossils showing a transition from gymnosperm to angiosperm have been discovered. This makes the origin of the angiosperms mysterious. Angiosperms quickly became the dominant plants, although gymnosperms continued to rule in cold, dry, or sandy habitats, as they still do today. Regardless of the origin of the angiosperms, by the end of the Cretaceous (65-70 mya) most flowering plant families had evolved.

Pollination and Seed Dispersal Coevolution occurs when an evolutionary change in one organism leads to an evolutionary change in another organism that interacts with it. Flowering plants show two great examples of coevolution: evolution of animal pollination and evolution of fruit dispersal. Flowers that rely on wind pollination are tiny and inconspicuous (like oak trees, maple trees, corn, grasses). Flowers that are pollinated by animals have showy petals to attract the pollinators.

Fruits function to disperse seeds. Flowers advertise their reward of nectar, sugar water, to attract pollinators. Fruits function to disperse seeds. Animals eat fruit, but don't digest seeds. Tiny hooks and spines to attach to animal. Also dispersed by wind, water (coconuts).

Monocots or Eudicots? Some flowering plants are neither monocots or dicots. Magnolia

Evolution of the flower What were the flowers of the earliest angiosperms like? Deduce their nature form what we know of certain living plants and from the fossil record. In general flowers were diverse in the number of floral parts and in their arrangements.

Parts of the flower provide clues to evolution The perianth of early angiosperms did not have distinct sepals and petals Sepals and petals were identical or there was a gradual transition in appearance between these whorls (magnolias and water lilies). i.e. petals can be viewed as modified leaves that have become specialized for attracting pollinators.

Wintergreen Chimphila umbellata

In most angiosperms Petals were probably derived originally from stamens that lost their sporangia- becoming sterile and modified to new role Most petals like stamens are supplied by one vascular strand In contrast sepals are normally supplied by the same number of vascular strands in a leaf

Petal fusion resulting in a tubular corolla figure 20-8c

The Stamens Magnoliids- broad, colored, and scented role in attracting floral visitors In others- small greenish, fleshy Many living angiosperm in contrast have thin filaments and thick terminal anthers In stamens of monocots and eudicots are less diverse than Magnoliids

Stamens continue In some specialized flowers the stamens are fused together. Form columnar structure i.e pea, melon and mallow fig 20-8d and sunflower 20-9d Some stamens fused with corolla i.e. snapdragon, phlox, and mint families.

Stamens can become nectaries In some families stamens become sterile losing their sporangia and becoming specialized nectaries. Nectaries are glands that secrete nectar- sugary fluids tha tattract pollinators and provides food for them. Most nectaries are not modified stamens but arose other ways.

The Carpels The carpels of many early angiosperms were unspecialized Carpels with no specialized areas for the entrapment of pollen grains comparable to specialized stigmas of most living andiosperms. Magnoliids- carpels are free from one another unlike most contemporary angiosperms.

Four evolutionary trends among flowers are evident Evolved toward having few parts that are definite in number Floral whorls have been reduced four to one in more advance ones and the floral parts often have become fused. Ovary has become inferior in position and the perianth has become differentiated into a distinct calyx and corolla The radial symmetry (regularity) or actinomorphy of early flowers has given way to bilateral symmetry (irregularity)or zygomorphy in more advance ones.

The Asteraceae and Orchidaceae are examples of specialized families Two largest families of angiosperms Asteraceae- compositae which are eudicots Orchidacea- monocots

The flower of the Asteraceae are closely bunched together into a head The epigynous flowers are relatively small and bunched together into a head Each flower have an inferior ovary composed of two fused carpels with a single ovule in one locule

Composite flowers Stamens are reduced to five in number Usually fused to one another (connate) And fused to the corolla (adnate) The petals also five are fused to one another and to the ovary The sepals are absent or reduced to a series of bristles or scales (pappus)

Pappus Often serves as an aid to dispersal by wind

Orchidaceae is the largest Angiosperm family 24, 000 species Orchids Unlike composites are monocots individual species rarely abundant Most are tropical 140 native to US and Canada

Orchids

Orchids Like the composites: The carpels are fused (The three carpels) Ovary is inferior Unlike the composites: Ovaries contain many thousands of minute ovules Each pollination event may result in huge number of seeds

Animals serve as the primary agents of floral evolution Flowers and insects have coevolved

Wind pollination flowers produce no nectar

Fruit is a Mature ovary Accessory fruit- fruit which some additional parts are retained (strawberry) Simple fruits develop from one carpel or from several united carpels. Aggregate fruits, such as those magnolias, raspberries and strawberries consist of a number of separate carpels of one gynoecium Multiple fruits consist of the gynoecia of more than one flower- the pineapple

Simple fruits May be soft and fleshy, dry and woody, or papery

Simple fruit fleshy fruits Berries- tomatoes, dates, and grapes Drupes- one to several carpels but only 1 seed- peaches, cherries, olives, plums Pomes- example of an accessory fruit- apples, pears

Honeysuckle, Lonicera hispidula

Dry simple fruit Dehiscent- tissue of the mature ovary wall (the pericarp) break open freeing seeds Indehiscent- the seeds remain in the fruit after the fruit has been shed from the parent plant.

Dehiscent fruit, Legumes

Cypselas, modified calyx (the Pappus)

Poison Ivy

Mescaline from the peyote cactus

Cannabis sativa

Quinine tx malaria

Erythroxylum coca