Rate law.

Slides:



Advertisements
Similar presentations
Chemical Kinetics Chapter 13.
Advertisements

KINETICS -REACTION RATES
Chemical Kinetics Chapter 13
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
Chemical Kinetics Chapter
Nanochemistry NAN 601 Dr. Marinella Sandros Lecture 5: Kinetics
Chapter 13 Chemical Kinetics
Chapter 13 Ch 13 Page 564. Chapter 13 Ch 13 Page 564.
Chemical Kinetics Ch 13 We have learned that enthalpy is the sum of the internal energy plus the energy associated with the work done by the system (PV)
Chemical Kinetics Chapter 14. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed?
Chemical Kinetics Chapter 14. The Rate Law Rate law – description of the effect of concentration on rate aA + bB cC + dD Rate = k [A] x [B] y reaction.
Chemistry 40S Unit 3: Chemical Kinetics Lesson 4.
Chemical Kinetics Chapter 16. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
Chemical Kinetics Chapter 12.
Rate Law 5-2 an expression which relates the rate to the concentrations and a specific rate constant.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13.
Reaction Rates Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant  Products aA.
Reaction Rates Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant  Products aA  bB 
C h a p t e r 12 Chemical Kinetics. Reaction Rates01 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant.
CHM 112 M. Prushan Chapter 12 Chemical Kinetics. CHM 112 M. Prushan Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There.
Rate Expression VIDEO AP 6.1. Collision Theory: When two chemicals react, their molecules have to collide with each other with proper energy and orientation.
Chemical Kinetics Kinetics – how fast does a reaction proceed?
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The Rate Law. Objectives: To understand what a rate law is To determine the overall reaction order from a rate law CLE
1 Chemical Kinetics Chapter 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Kinetics Chapter 13 Dr. Ali Bumajdad. Chapter 13 Topics Rate of a Reaction Reaction Rates and Stoichiometry The Rate Law Relationship between.
Chemical Kinetics Rates of Reactions ©2011 University of Illinois Board of Trustees
Equilibrium: A State of Dynamic Balance Chapter 18.1.
Chemical Kinetics Chapter 13. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
Chemical Kinetics Chung (Peter) Chieh Professor of chemistry University of Waterloo Waterloo, Ontario, Canada Chung (Peter) Chieh University of Waterloo.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
N2O2 is detected during the reaction!
Describing Reactions Stoichiometry Thermodynamics Kinetics concerned with the speed or rates of chemical reactions reacting ratios, limiting and excess.
1 Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Kinetics Chapter 13. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
CHAPTER Four(13) Chemical Kinatics. Chapter 4 / Chemical Kinetics Chapter Four Contains: 4.1 The Rate of a Reaction 4.2 The Rate Law 4.3 The Relation.
CHEM 102, Fall 2015, LA TECH Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours: M.W &F, 8:00-9:00.
1 Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Kinetics. Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate is the change in the concentration.
Chapter 14 Chemical Kinetics
Study of Reaction Rates
Chemical Kinetics Chapter 12.
Chemical Kinetics Chapter 13.
Chemical Kinetics Chapter 13
Chapter 14 Chemical Kinetics.
Chemical Kinetics Chapter 13
Chapter 14 Homework pages 463 – 466 1, 2, 5 – 11, 13, 15, 19, ,
Chemical Kinetics Chapter 13.
Chemical Kinetics Chapter 13
Rate Law.
Chapter 14 Chemical Kinetics
CHEMICAL KINETICS Chpt 12
A B time rate = - D[A] Dt rate = D[B] Dt 13.1.
11.0 REACTION KINETICS Objectives: 1. Define reaction rate, average rate, instantaneous rate and initial rate. 2. Determine the reaction.
Chemical Kinetics.
Chemical Kinetics Chapter 13
Chemical Kinetics Chapter 13
Chemical Kinetics Chapter 15
Chemical Kinetics Chapter 14
Reaction Rates and Stoichiometry
Chemical Kinetics Chapter 14.
Progress of Chemical Reactions
Chemical Kinetics Chapter 13
The Rate Law The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some.
Chapter 14 Chemical Kinetics
Chemical Kinetics Chapter 13.
Chemical Kinetics Chapter 13.
Chapter 12 Chemical Kinetics.
Presentation transcript:

Rate law

rate a [Br2] rate = k [Br2] k = rate [Br2] = rate constant = 3.50 x 10-3 s-1

The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers. aA + bB cC + dD Rate = k [A]x[B]y Reaction is xth order in A Reaction is yth order in B Reaction is (x +y)th order overall

Rate Laws Rate laws are always determined experimentally. Reaction order is always defined in terms of reactant (not product) concentrations. The order of a reactant is not related to the stoichiometric coefficient of the reactant in the balanced chemical equation. F2 (g) + 2ClO2 (g) 2FClO2 (g) 1 rate = k [F2][ClO2]

F2 (g) + 2ClO2 (g) 2FClO2 (g) rate = k [F2]x[ClO2]y Double [F2] with [ClO2] constant Rate doubles x = 1 rate = k [F2][ClO2] Quadruple [ClO2] with [F2] constant Rate quadruples y = 1

Example The reaction of nitric oxide with hydrogen at 1280°C is From the following data collected at this temperature, determine (a) the rate law (b) the rate constant (c) the rate of the reaction when [NO] = 12.0 × 10−3 M and [H2] = 6.0 × 10 −3 M

Review of Concepts The relative rates of the reaction 2A + B products shown in the diagrams (a)-(c) are 1:2:4. The red spheres represent A molecules and the green spheres represent B molecules. Write a rate law for this reaction.

Integrated rate law

First-Order Reactions rate = - D[A] Dt A product rate = k [A] D[A] Dt = k [A] - rate [A] M/s M = k = = 1/s or s-1 [A] is the concentration of A at any time t [A]0 is the concentration of A at time t=0 [A] = [A]0e−kt ln[A] = -kt + ln[A]0

Second-Order Reactions rate = - D[A] Dt A product rate = k [A]2 rate [A]2 M/s M2 = D[A] Dt = k [A]2 - k = = 1/M•s 1 [A] = [A]0 + kt [A] is the concentration of A at any time t [A]0 is the concentration of A at time t=0 t½ = t when [A] = [A]0/2 t½ = 1 k[A]0

Zero-Order Reactions rate = - D[A] Dt A product rate = k [A]0 = k rate = M/s [A] is the concentration of A at any time t [A] = [A]0 - kt [A]0 is the concentration of A at time t = 0 t½ = t when [A] = [A]0/2 t½ = [A]0 2k

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions Order Rate Law Concentration-Time Equation Half-Life t½ = [A]0 2k rate = k [A] = [A]0 - kt t½ ln 2 k = 1 rate = k [A] ln[A] = ln[A]0 - kt 1 [A] = [A]0 + kt t½ = 1 k[A]0 2 rate = k [A]2

Rate Laws Summary Assume rxn studied under conditions where only forward rxn is important Two types of rate laws Differential rate law Integrated rate law Use method of initial rates to obtain rate law