SUSY parameter determination at LHC and ILC

Slides:



Advertisements
Similar presentations
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Advertisements

Extraction of Parameters from Collider Data? NPF 2009 Heidelberg 02/26/2009 Klaus Desch and Dirk Zerwas Uni Bonn and LAL Orsay Introduction Finding the.
Susy05, Durham 21 st July1 Split SUSY at Colliders Peter Richardson Durham University Work done in collaboration with W. Kilian, T. Plehn and E. Schmidt,
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
Extraction of SUSY Parameters from Collider Data SUSY 2008 Seoul 06/17/2008 Dirk Zerwas LAL Orsay Introduction Measurements Reconstruction of fundamental.
From the ATLAS electromagnetic calorimeter to SUSY Freiburg, 15/06/05 Dirk Zerwas LAL Orsay Introduction ATLAS EM-LARG Electrons and Photons SUSY measurements.
Higgs and SUSY at the LHC Alan Barr on behalf of the ATLAS and CMS collaborations ICHEP-17 Aug 2004, Beijing ATLAS.
SUSY Studies LCWS 05, Stanford, March 2005 Jan Kalinowski Warsaw University.
Mitsuru Kakizaki (University of Toyama)
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
EuroGDR, 13 th December 2003 Dan Tovey CERN, 18/03/2004 G. Bélanger 1 Uncertainties in the relic density calculations in mSUGRA B. Allanach, G. Bélanger,
1 Jet Energy Studies at  s=1 TeV e + e - Colliders: A First Look C.F. Berger & TGR 05/08.
Reconstruction of Fundamental SUSY Parameters at LHC and LC
International Conference on Linear Colliders Paris, April 19-23, 2004 Theoretical Introduction John Ellis.
Distinguishing MSSM and Dirac neutralinos at the ILC Majorana (MSSM) ⇔ Dirac (MRSSM) S.Y. Choi (Chonbuk, Korea) SYC, Drees, Freitas, Zerwas, PRD76 (2008)
SY Choi (Chonbuk, Korea) Highlighting “central HEP targets of ILC” based on Physics Chapter of RDR and many review talks/reports Leaving “cosmological.
Discovery potential for H + decaying to SUSY particles 30 March 2005, ATLAS Higgs Working Group Meeting, CERN Christian Hansen Uppsala University Nils.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
ATLAS Dan Tovey 1 Measurement of the LSP Mass Dan Tovey University of Sheffield On Behalf of the ATLAS Collaboration.
1 Physics at Hadron Colliders Lecture IV CERN, Summer Student Lectures, July 2010 Beate Heinemann University of California, Berkeley Lawrence Berkeley.
Neutralino relic density in the CPVMSSM and the ILC G. Bélanger LAPTH G. B, O. Kittel, S. Kraml, H. Martyn, A. Pukhov, hep-ph/ , Phys.Rev.D Motivation.
Overview of Supersymmetry and Dark Matter
Convention and Project Jan Kalinowski (Warsaw University) for the SPA Collaboration P.M.Zerwas, H.U.Martyn, W.Hollik, W.Kilian, W.Majerotto, W.Porod +
A Linear Collider Run Scenario Choose a physics scenario that is CONSERVATIVE in the sense that it has many particles and thresholds to explore. Assume.
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
Dave Toback Texas A&M University HCP 2004 June 17 th Run II Searches for Supersymmetry Dave Toback Texas A&M University June 17 th 2004 HCP2004.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
EuroGDR, 13 th December 2003 Dan Tovey LCWS-Paris, 23/04/2004 G. Bélanger 1 Summary of SUSY studies.
David J. Miller UCL; Linear Collider Physics. ICHEP Beijing 22/8/04 1 Linear Collider Physics.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
SPS5 SUSY STUDIES AT ATLAS Iris Borjanovic Institute of Physics, Belgrade.
F. Richard ECFA Study June 2008 A 4th generation scenario F. Richard LAL/Orsay Beyond the 3SM generation at the LHC era.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Physics at the LHC M. Guchait DHEP Annual Meeting 7-8 th April, 2016.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
Supersymmetry at LHC and beyond
Physics Potential of the High Energy e+e- Linear Collider
Dissecting LHC Results
Journées de Prospective
Complementarity between FCC-ee and FCC-hh Searches for BSM Physics
SUSY at LEP2 (third generation and ewinos)
Physics at future HEP colliders
Status of SFitter IRN Terascale Montpellier July 5, 2017 Dirk Zerwas
Higgs Strahlung and W fusion
The SFitter Project 2nd JCL meeting Saclay November 27, 2013
Focus-Point studies at LHC
Search for BSM at LHC Fayet Fest Paris November 9, 2016 Dirk Zerwas
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Collider Phenomenology of SUSY Cosmic Connections &
Physics at the LHC Monday: The standard model and
Barbara Mele Sezione di Roma
Evidence for WIMP Dark Matter
Report on the collider session: part 1
Is Nature Supersymmetric?
Vancouver Linear Collider Workshop
Phenomenology of SUSY Models with Non-universal Sfermions
mSUGRA SUSY Searches at the LHC
SUSY Searches with ZEUS
Abdelhak Djouadi and Dirk Zerwas
Search for Higgs and Supersymmetry
Relic density : dependence on MSSM parameters
Institute of Theoretical Physics, CAS
SUSY and B physics observables
& Searches for Squarks and Gluinos at the Tevatron
Hints for Low Supersymmetry Scale from Analysis of Running Couplings
Mass Reconstruction Methods in ATLAS
Presentation transcript:

SUSY parameter determination at LHC and ILC Orsay, 12/10/05 Dirk Zerwas LAL Orsay Philip Bechtle, Klaus Desch, Rémi Lafaye, Tilman Plehn, P.Wienemann SLAC, Freiburg, CERN, MPI-Munich, Freiburg Introduction SUSY measurements Reconstruction of the fundamental parameters Conclusions

Introduction FITTINO (P. Bechtle, K. Desch, P. Wienemann and SFITTER (R. Lafaye, T. Plehn, D. Z.): tools to determine supersymmetric parameters from measurements The workhorses: Mass spectra generated by SOFTSUSY, SPHENO, SUSPECT Branching ratios by MSMLIB, SPHENO e+e- cross sections by SPHENO NLO proton cross sections by Prospino2.0 Beenakker et al Models: MSSM (minimal supersymmetric extension SM) mSUGRA (minimal supergravity) GMSB AMB NMSSM

SPS1a and SPA1 m0 = 100GeV m1/2 = 250GeV A0 = -100GeV tanβ =10 sign(μ)=+ favourable for LHC and ILC (Complementarity) Moderately heavy gluinos and squarks “Physics Interplay of the LHC and ILC” Editor G. Weiglein hep-ph/0410364 Heavy and light gauginos ~ τ1 lighter than lightest χ± : χ± BR 100% τν χ2 BR 90% ττ cascade: qL  χ2 q  ℓR ℓ q  ℓ ℓ qχ1 visible ~ ~ ~ Higgs at the limit of LEP reach ~ light sleptons

LHC: Mass determination for 300fb-1 (thus 2014) LHC: Toy MC from edges, thresholds to masses Polesello et al: use of χ1 from ILC (high precision) in LHC analyses improves the mass determination

MSUGRA with masses MSUGRA is a good testing ground for the techniques of fitting and sensitivity, but not more Start SPS1a LHC ILC LHC+ILC m0 100 1TeV m1/2 250 tanβ 10 50 A0 -100 0GeV Two separate questions: do we find the right point? need and unbiased starting point what are the errors? SPS1a ΔLHC ΔILC ΔLHC+ILC m0 100 3.9 0.09 0.08 m1/2 250 1.7 0.13 0.11 tanβ 10 1.1 0.12 A0 -100 33 4.8 4.3 Convergence to central point errors from LHC % errors from ILC 0.1% LHC+ILC: slight improvement low mass scalars dominate m0 Sign(μ) fixed

Masses versus Edges (LHC) SPS1a ΔLHC masses ΔLHCedges m0 100 3.9 1.2 m1/2 250 1.7 1.0 tanβ 10 1.1 0.9 A0 -100 33 20 Sign(μ) fixed use of masses improves parameter determination! edges to masses is not a simple “coordinate” transformation: Δm0 Effect on mℓR Effect on mℓℓ 1GeV 0.7/5=0.14 0.4/0.08=5 Similar effect for m1/2 need correlations to obtain the ultimate precision from masses….

Total Error and down/up effect Theoretical errors (mixture of c2c and educated guess): Higgs sleptons Squarks,gluinos Neutralinos, charginos 3GeV 1% 3% Higgs error: Sven Heinemeyer et al. SPS1a ΔLHC+ILCexp ΔLHC+ ILCth m0 100 0.08 1.2 m1/2 250 0.11 0.7 tanβ 10 0.12 A0 -100 4.3 17 Including theory errors reduces sensitivity by an order of magnitude SPS1a SoftSUSYup ΔLHC+LC m0 100 95.2 1.1 m1/2 250 249.8 0.5 tanβ 10 9.82 A0 -100 -97 Running down/up spectrum generated by SUSPECT fit with SOFTSUSY (B. Allanach) central values shifted (natural) m0 not compatible (RADCORR sleptons?) theoretical errors are important

SLHC+ILC SPS1a results LHC 300fb-1 SLHC 3000fb-1 Some improvement 0.08 4.3 3 3.8 2.1 0.5 0.8 1.8 6 5.3 1.1 SPS1a results LHC 300fb-1 SLHC 3000fb-1 Some improvement limitation: energy scale SPS1a ΔLHC before ΔSLHC ΔLHC+ILC ΔSLHC+ILC m0 100 1.2 0.7 0.08 0.07 m1/2 250 1.0 0.6 0.11 tanβ 10 0.9 0.12 A0 -100 20 4.4 3.8 SLHC: factor 2 improvement SLHC+ILC marginal wrt LHC+ILC

MSUGRA beyond masses Fittino: SPS1a’ ΔLHC edges ΔLHC all ΔLHC+ILC m0 70 1.2 1.4 0.07 m1/2 250 1.7 1.0 tanβ 10 1.1 1.3 0.04 A0 -300 33 16 2.5 Fittino: Add the Higgs coupling measurements at LHC Add the cross section measurements at ILC Higgs branching ratios ILC improvement in A0 for LHC error reduction factor 2 in LHC+ILC LHC ΔLHC LHC+ILC ΔLHC+ILC m0 70.4 1.4 67.9 0.08 m1/2 250.7 1.0 251.6 0.07 tanβ 9.9 1.3 11.5 0.04 A0 -298 16 -162 2.7 χ2 0.5 3667 Small deviation from MSUGRA: 1st and 2nd separated from 3rd L separated from R sfermions clear separation of % deviations from MSUGRA via χ2

Beyond SPS1a at LHC Fittino and Sfitter are not restricted to SPS1a m0 =1400 GeV m1/2 = 180 GeV A0=700 GeV tanβ = 51 μ > 0 Study motivated by: Wim de Boer: astro-ph/0408272 (talk yesterday and this afternoon) Dominant Processes at the LHC: Tri-lepton signal promissing Measurements: Higgs masses h,H,A mass difference χ2-χ1 mass difference g- χ2 Sufficient for MSUGRA m0 =1400 ± (50 – 530)GeV m1/2 = 180 ± (2-12) GeV A0 =700 ± (181-350) GeV tanβ= 51 ± (0.33-2) Uncertainties: b quark mass t quark mass Higgs mass prediction ~

MSSM Fit the low energy parameters LHC ILC LHC+ILC MSSM fit: bottom-up approach 24 parameters at the EW scale LHC or ILC alone: certains parameters must be fixed LHC+ILC: all parameters fitted several parameters improved Caveat: LHC errors ~ theory errors ILC errors << theory errors SPA project: improvement of theory predictions and standardisation

Conclusions SFitter (and Fittino) will be essential to determine SUSY’s fundamental parameters mass differences, edges and thresholds are more sensitive than masses the LHC will be able to measure the parameters at the level % ILC will improve by a factor 10 LHC+ILC reduces the model dependence Small deviations from MSUGRA easily detected SLHC reduces errors by factor 2 MSSM can be probed at both colliders with sensitivities to different regions of the parameter space