Fig. 1 The MB2T4-family materials (MB2T4: M = transition-metal or rare-earth element, B = Bi or Sb, T = Te, Se, or S) using MnBi2Te4 as an example. The.

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 3 FM MnBi2Te4 bulk. FM MnBi2Te4 bulk. Crystal structure (A) and band structure (B) of the FM bulk. (C) Zoom-in band structures along the out-of-plane.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 1 Precursor suspensions for spin coating and the obtained monolayer films. Precursor suspensions for spin coating and the obtained monolayer films.
Fig. 1 Evolution of magnetic field lines around a foreshock bubble in the GSE-XY plane (z = 0): Results of a hybrid simulation. Evolution of magnetic field.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 1 NP-free Ch-CNC droplets.
Fig. 3 Electron PSD in various regions.
Fig. 4 Morphogenesis in the Ch-CNC host droplets and NP assemblies.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
HT synthesis of boronic acids using the building block approach
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 5 Panel appearance computation.
Fig. 5 Structural photocycle for DmCry.
Fig. 1 Bioinspired design of AAD for promoting wound contraction.
Fig. 1 Parameterization and temporal distribution of carbon isotopic events in the database. Parameterization and temporal distribution of carbon isotopic.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Photon number statistics resulting from Fock state |l, S − l〉 interference. Photon number statistics resulting from Fock state |l, S − l〉 interference.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Map of the study area including the northwestern end of the Hawaiian Ridge and the southern portion of the ESC. Map of the study area including.
Fig. 1 Structure of L10-IrMn.
Fig. 3 Magnetic and transport properties of ACoO3 (A = Ca, Sr).
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 4 EUV TG signal from Si.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 5 In-plane angle dependence of SOT efficiency (θDL,m) and resonance condition (Hres). In-plane angle dependence of SOT efficiency (θDL,m) and resonance.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 5 Topology structure and strategy for the bottom-up synthesis of structurally uniform carboncones[1,m]. Topology structure and strategy for the bottom-up.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 2 The sex-linked mbt proteome.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Characterization of the current-induced effective fields.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 4 SPICE simulation of stochasticity.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Schematic view and characterizations of FGT/Pt bilayer.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 1 Topology of places and city block complexity.
Fig. 4 SOT-driven perpendicular magnetization switching in the FGT/Pt bilayer device. SOT-driven perpendicular magnetization switching in the FGT/Pt bilayer.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Maximal energy intake.
Multiplexed four- and eight-channel devices for rapid processing
Fig. 3 Electronic conductivity studies.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 5 Density plots showing the relationship between growth responses to extreme events and site-level mean precipitation from all sites (N = 1314). Density.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 1 Structure and basic properties of EuTiO3 (ETO) films.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 1 Atomic structure of U1−xThxSb2.
Fig. 5 Schematics illustrating enhancement in April tornado activity due to SST. Schematics illustrating enhancement in April tornado activity due to SST.
Fig. 1 Completely derived from natural wood, nanowood with hierarchically aligned cellulose nanofibrils can be used as an anisotropic super thermal insulator.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Presentation transcript:

Fig. 1 The MB2T4-family materials (MB2T4: M = transition-metal or rare-earth element, B = Bi or Sb, T = Te, Se, or S) using MnBi2Te4 as an example. The MB2T4-family materials (MB2T4: M = transition-metal or rare-earth element, B = Bi or Sb, T = Te, Se, or S) using MnBi2Te4 as an example. (A) Monolayer MB2T4 with an FM M layer, whose easy axis is out of plane for MB2T4. The monolayer is predicted to be an FM insulator for varying element M (blue panels). It is metallic and possibly unstable for other elements (gray panels). The total magnetic moments per unit cell and their orientations (out of plane or in plane) of MBi2Te4 are depicted by the numbers and red arrows, respectively, in the bottom panel. Note that the magnetic easy axis is unknown for M = Ti. (B) Rich topological quantum states in MB2T4 thin films (2D) and bulks (3D) of different magnetic states that are tunable from AFM to FM or PM. AI, axion insulator; QSH, quantum spin Hall; DSM, Dirac semimetal. (C) Schematic diagram showing that magnetism and topology in MnBi2Te4 are induced by Mn d-bands and Bi-Te p-bands, respectively. (D) Band structure of monolayer MnBi2Te4, which is an FM insulator. Jiaheng Li et al. Sci Adv 2019;5:eaaw5685 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).