Search for Lepton-number Violating Processes

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Sergio Palomares-Ruiz June 22, 2005 Super-NO A Based on O. Mena, SPR and S. Pascoli hep-ph/ a long-baseline neutrino experiment with two off-axis.
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino.
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Neutrino Physics - Lecture 1 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Nuclear matrix elements 1 / T 1/2 = PS * NME 2 * (m / m e ) 2 measured quantityquantity of interest The big unknown Started worldwide effort for a coherent.
Probing Majorana Neutrinos (in Rare Decays of Mesons) 11/17/ DBD11 C. S. Kim arXiv: (PRD82,053010,2010) G. Cvetic, C. Dib, S.K. Kang, C.S.
C. W. Kim KIAS The Johns Hopkins University Neutrino Physics and Cosmology SDSS-KSG Workshop.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
New era of neutrino physics 1.Atmospheric neutrino oscillations (in particular zenith angle dependence of the muon neutrino flux) 2. Solar neutrino deficit.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
1 Neutrino Phenomenology Boris Kayser Scottish Summer School August 10,
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
March 22 Heidelberg 1 Majorana neutrino spectroscopy and measuring relic neutrino M. Yoshimura hep- ph/ Why atoms ? Another or perhaps a.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Probing Majorana Neutrinos in the LHC Era YongPyong2010 Seoul National University of Tech. Sin Kyu Kang.
1 George Lafferty University of Manchester Charm 2006: International Workshop on Tau-Charm Physics June , Beijing Tau Physics from the B Factories.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Beauty and charm at the LHC, Jeroen van Tilburg, FOM Veldhoven 2014 Jeroen van Tilburg Beauty and charm at the LHC: searches for TeV scale phenomena in.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Neutrino physics: The future Gabriela Barenboim TAU04.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Neutrinoless Double Beta Decay and the Majorana Neutrino
Fourth Generation Leptons Linda Carpenter April 2011.
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Flavor Mixing of quarks.
Mass Hierarchy Determination with WATCHMAN
Sterile Neutrinos and WDM
A Study on Loop-Induced Neutrino Masses
Double beta decay and Majorana neutrinos
Towards Majorana neutrino spectroscopy M. Yoshimura
Recent results on light hadron spectroscopy at BES
Neutrino mass and mixing: 2006 Status
Lepton Number and Lepton Flavour Violation
Amand Faessler University of Tuebingen
Particle physics.
University of Minnesota on behalf of the CLEO Collaboration
Search for Rare and Forbidden Processes at BES
Charmed Baryon Spectroscopy and Decays using the Belle Detector
Double beta decay and Leptogenesis
Triangle Universities Nuclear Laboratory
Neutrino Masses and Mixings
Neutrino Oscillations
Search for (3770) non-DD-bar Decays
Testing Seesaw at LHC 郑亚娟.
Search for Invisible Decay of Y(1S)
Institut de Physique Nucléaire Orsay, France
Recent Results of J/ and (2S) at BESII
Lepton-Number Violating Heavy Meson Decays
Penning Trap Mass Spectrometry for Particle Physics
Cosmological/phenomenological implications of neutrino oscillations
The Hunt for right-Handed Neutrinos
Presentation transcript:

Search for Lepton-number Violating Processes Pheno 2006 Anupama Atre Anupama Atre

Neutrinos are massive Anupama Atre

There are only three “active” light neutrinos We also know There are only three “active” light neutrinos N = 2.984 § 0.008, from Z pole at LEP-1. Direct lab bound: m < 2.2 eV from Tritium beta decay  mi < 0.17 – 1 eV from WMAP, SDSS (Ly spectra), SNIa. The absence of neutrinoless double beta decay bound on Majorana mass <m> ee < 1 eV Anupama Atre

Hierarchy – inverted or normal? Absolute mass scale ? Hierarchy – inverted or normal?  m2a  m2s m1 m2 m3 Normal Inverted Dirac or Majorana? Anupama Atre

Anupama Atre

Anupama Atre

Charged current and Neutral current Anupama Atre

L = 2 process  Majorana nature of neutrino The transition rates are proportional to: for light neutrino [1] for intermediate mass neutrino [2] for heavy neutrino [3] f1 f2’ f1’ f2 generic diagram [1] AA, V Barger, T Han, Phys. Rev. D 71, 113014 (2005) [arXiv:hep-ph/0502163] [2] AA, T Han, S Pascoli to appear [3] T Han, B Zhang [arXiv:hep-ph/0604064] AA, T Han, S pascoli, B Zhang to appear Anupama Atre

Light (active) Majorana neutrino f1 f2’ f1’ f2 We have six effective neutrino masses : 0 , rare meson decay :  decay : - e+ conversion, rare meson decay :  decay : rare meson decay : none Anupama Atre

Determination of effective neutrino masses Parameter Input |ma2| 1.9£10-3 eV2 - 3.0£10-3 eV2 |ms2| 90% CL m2s vs tan2s plot a 90% CL m2a vs sin22a plot s 90%CL m2s vs tan2s plot x 90% CL CHOOZ exclusion plot  0 to 2 2 3  0.42 eV at 95% CL 3 masses: m1, m2 and m3  = m1 + m2 + m3 and  m2a and  m2s 3 mixing angles: a, s and x 3 phases: , 2 and 3 AA, V Barger, T Han, Phys. Rev. D 71, 113014 (2005) [arXiv:hep-ph/0502163] Anupama Atre

Anupama Atre

Neutrinoless Double Beta Decay (0) Isotope Half-life (yrs) hmiee (eV) Year 48Ca > 1.4 £ 1022 <7.2 – 44.7 2004 76Ge > 1.9 £ 1025 <0.35 2001 > 1.6 £ 1025 <0.33 – 1.35 2002 = 1.2 £ 1025 = 0.44 82Se > 2.7 £ 1022 <5 1992 100Mo > 5.5 £ 1022 <2.1 116Cd > 1.7 £ 1023 <1.7 2003 128Te > 7.7 £ 1024 <1.1 – 1.5 1993 130Te > 5.5 £ 1023 <0.37 – 1.9 136Xe > 4.4 £ 1023 <1.8 – 5.2 1998 150Nd > 1.2 £ 1021 < 3.0 1997 (A,Z) Nuclear Physics (A,Z+2) S.R. Elliott and J. Engel, J. Physics G30 (2004) R183, [arXiv:hep-ph/0405078] = 0.14 (0.06) eV Anupama Atre

Lepton Number Violating Tau Decays Decay Mode Bexp - ! e+ - - 1.9 £ 10-6 12 TeV - ! e+ - K- 2.1 £ 10-6 46 TeV - ! e+ K- K- 3.8 £ 10-6 730 TeV - ! + - - 3.4 £ 10-6 20 TeV - ! + - K- 7.0 £ 10-6 100 TeV - ! + K- K- 6.0 £ 10-6 1000 TeV CLEO Collaboration, D.Bliss et al., Phys. Rev. D 57 (1998) 5903, [arXiv:hep-ex/9712010] Anupama Atre

Rare Meson Decays Decay Mode Bexp TeV D+ ! K- e+ e+ 1.2 £ 10-4 1900 1.3 £ 10-5 670 D+ ! K- e+ + 1.3 £ 10-4 1500 Ds+ ! K- e+ e+ 6.3 £ 10-4 990 Ds+ ! K- + + 150 Ds+ ! K- e+ + 6.8 £ 10-4 740 B+ ! K- e+ e+ 1.0 £ 10-6 1300 B+ ! K- + + 1.8 £ 10-6 1800 B+ ! K- e+ + 2.0 £ 10-6 Decay Mode Bexp TeV D+ ! - e+ e+ 9.6 £ 10-5 320 D+ ! - + + 4.8 £ 10-6 76 D+ ! - e+ + 5.0 £ 10-5 170 Ds+ ! - e+ e+ 6.9 £ 10-4 200 Ds+ ! - + + 2.9 £ 10-5 42 Ds+ ! - e+ + 7.3 £ 10-4 150 B+ ! - e+ e+ 1.6 £ 10-6 420 B+ ! - + + 1.4 £ 10-6 400 B+ ! - e+ + 1.3 £ 10-6 270 K+ ! - e+ e+ 6.4 £ 10-10 0.11 K+ ! - + + 3.0 £ 10-9 0.48 K+ ! - e+ + 5.0 £ 10-10 0.09 Anupama Atre

Muon – Positron Conversion (A,Z) Nuclear Physics (A,Z-2) · 17(82) MeV K. Zuber, [arXiv:hep-ph/0008080] SINDRUM II Collaboration, J. Kaulard et al., Phys. Lett. B 422 (1998) 334 Anupama Atre

Summary 0 - - e+ conversion - ! e+ - - - ! + - - Cosmo Bounds Exp Bounds Experiment 0.14 (0.06) eV 0.33 eV 0 17 MeV* - - e+ conversion 12 TeV - ! e+ - - 480 GeV K+ ! - + + 19 TeV - ! + - - none B- ! M- t+ t+ * 90 GeV from K+  - e+ + Anupama Atre

Intermediate mass Majorana neutrino * f1 f2’ f1’ f2 resonant enhancement, transition rates tau decay, rare meson decay Anupama Atre * AA, T Han and S Pascoli, to appear

Width of Intermediate mass Majorana neutrino 2 body decays : CC decays  NC decays  3 body decays: CC decays  NC decays  CC + NC decays  combination of CC + NC mixings Anupama Atre

36 decay modes to look for lepton number violation !!!! Parameters for MC sampling mass of neutrino m4 resonant mass region three mixings ~ 0 to 1 Anupama Atre

Anupama Atre

Anupama Atre

Anupama Atre

Anupama Atre

Anupama Atre

Current bounds on sterile neutrino: peak searches accelerator searches heavy atmospheric neutrinos cosmology, BBN, WMAP Anupama Atre

It is of fundamental importance to verify Majorana nature of neutrinos We look for genuine  L = 2 processes For the three active ’s 0 is the best hope For a sterile neutrino N (or 4) Rare  and meson decays are sensitive to 140 MeV < m4 < 5 GeV, 10-9 < |V l4|2 < 10-2 Depending on the unknown mixing and mass 4 can show up in any channel Other processes to look for B+  e+ + M-, B+  + + M-, B+  + + M- Anupama Atre

Thank You !!!!! Anupama Atre