Gas Laws Lecture.

Slides:



Advertisements
Similar presentations
Gases.
Advertisements

Gases.
Gases.
The Gas Laws Chapter 14.
Gas Law Properties of gases: Kinetic Theory Compressible Expand
GASES Chapter 14.
Unit 8 Gases.
Gases.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Physical Characteristics of Gases
Physical Characteristics of Gases The Kinetic Molecular Theory of Matter.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Behavior of Gases & Kinetic Molecular Theory Unit 7 – Phase of Matter.
Intro to Gases Boyle’s Law Lab Chemistry 4/16/15.
Energy and Gases Kinetic energy: is the energy of motion. Potential Energy: energy of Position or stored energy Exothermic –energy is released by the substance.
Gases Kinetic Molecular Theory of Gases. A gas consists of small particles (atoms/molecules) that move randomly with rapid velocities Further Information.
Chemistry Chapter 10 notes Physical Characteristics of Gases.
Gases.
Chapter 12 Physical Characteristics of Gases. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is.
1 Physical Characteristics of Gases Chapter Kinetic-molecular theory Particles of matter are always in motion.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Gas!!! It’s Everywhere!!!!.
Honors Chemistry, Chapter 10 Page 1 Chapter 10 – Physical Characteristics of Gases.
Chapter #10 Physical Characteristics of Gases. Chapter 10.1 Kinetic-molecular theory is based on the idea that particles of matter are always in motion.
Gases Dr. Chin Chu River Dell Regional High School
Chapter 10 Gas Laws Objectives: Understand the characteristics of gases, real and Ideal. Understand the gas law.
Gases Ch.10 and 11. Kinetic-Molecular Theory 1.Gases consist of very small particles that are far apart Most particles are molecules Volume of particles.
Behavior of Gases  Gases behave much differently than liquids and solids and thus, have different laws.  Because gas molecules have no forces keeping.
Wednesday February 3, 2010 (Review for Test 7). No Bell Ringer Today Bell Ringer
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Properties of Gases Kinetic Molecular Theory. Kinetic-Molecular Theory  Based on idea that particles of matter are always in motion.  Provides reasoning.
The Nature of Gases. I.The Kinetic Theory and a Model for Gases A.Assumptions of the Kinetic Theory 1.Gases consist of large numbers of tiny particles.
The Kinetic Molecular Theory of Matter Describe each word to define: Kinetic Molecular Theory Matter.
Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of GasesThe Kinetic-Molecular Theory.
Gases Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws.
The Kinetic-Molecular Theory of Matter with Gases Section 10.1.
Chapter 10: Physical Characteristics of Gases
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Gases and their Properties. Kinetic-Molecular Theory Gases = large #’s of tiny particles spaced far apart Gases = large #’s of tiny particles spaced far.
The Kinetic-Molecular
Day Day Day Read / review pages AND complete #s 3-6 AND Read / review pages AND complete #s Due Tuesday.
Video 10-1 Kinetic Molecular Theory Properties of Gases Deviations from Ideal Gas Behavior.
Chapter 11, Part 1 Physical Characteristics of Gases.
Gases. Ideal Gases Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory.  Gases consist of tiny.
Some rocket engines use a mixture of hydrazine, N 2 H 4, and hydrogen peroxide, H 2 O 2, as the propellant according to the following equation: N 2 H 4.
GAS LAWS. The Nature of Gases  Gases expand to fill their containers  Gases are fluid – they flow  Gases have low density  1/1000 the density of the.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
 Gas particles are much smaller than the distance between them We assume the gas particles themselves have virtually no volume  Gas particles do not.
Day Day Day Read / review pages AND complete #s 3-6 AND Read / review pages AND complete #s Due Tuesday.
V. Combined and Ideal Gas Law
Unit 5: Gases and Gas Laws
Chapter 10: Physical Characteristics of Gases
Kinetic-Molecular Theory
The Kinetic-Molecular Theory of Matter
The Kinetic-Molecular
Physical Characteristics of Gases
Chapter 10 Gases No…not that kind of gas.
GASES Holt Modern Chemistry.
Kinetic-Molecular Theory
Kinetic Theory of Matter
Kinetic Molecular Theory of Gases
The Gas Laws A Tutorial on the Behavior of Gases. Mr. Forte Chemistry
The Kinetic-Molecular Theory of Gases
Physical Characteristics of Gases
Section 1 The Kinetic-Molecular Theory of Matter
Gases and Gas Laws.
Diffusion Particles of 2 or more substances mix spontaneously due to random motion How fast gases diffuse depends on: 1. speed of particles (KE) 2. Size.
Physical Characteristics of Gases
Presentation transcript:

Gas Laws Lecture

Kinetic Molecular Theory of Gases 1) Gases consist of large numbers of tiny particles that are far apart relative to their size 2) Collisions between gas particles and between particles and container walls are elastic – they result in no net loss of kinetic energy

3) Gas particles are in continuous, rapid, random motion 3) Gas particles are in continuous, rapid, random motion. They therefore possess kinetic energy, which is energy in motion. 4) There are no forces of attraction or repulsion between gas particles 5) The average kinetic energy of gas particles depends on the temperature of the gas

In Theory . . . Theories are great things, especially when they are true . . . The Kinetic Molecular Theory is mostly true In the “real world” there are attractions between particles in gases when the particles get close enough and have low kinetic energy Theory truest for noble gases Theory less true for water vapor

Properties of Gases Expansion Fluidity Gases have no definite volume, they expand to fill whatever space is available Fluidity Because there are no attractions between particles, the particles can slide past each other (flow). This is why gases have no definite shape.

Low Density Compressibility Gas particles are “far apart,” so there is a lot of empty space and therefore low density. The density of a material as a gas is typically 1/1000 of its liquid or solid state. Compressibility Because gas particles are naturally far apart, it is possible to push them closer together. This is called compression

Diffusion Diffusion is the spontaneous mixing of two substances caused by their random motion. The net result will appear to be the movement from areas of high concentration to areas of low concentration. The rate of diffusion depends on 1) their speed 2) their diameters 3) the attractive forces between them

Effusion Effusion is the movement of gas particles through tiny openings Gortex works by effusion

Units of Measure for Gases Temperature – average kinetic energy of a sample (Kelvins, K = C + 273) Pressure – how much the particles are pressing on each other and the walls of a container measures in – atmospheres (atm), millimeters of mercury (mm Hg), or pascals (Pa) 1 atm = 760 mm Hg = 101.325 kPa (1013.25 Pa) Volume – amount of space (L)

Boyle’s Law Pressure and Volume are inversely proportional P1V1 = P2V2 A 50 mL gas sample at 110 kPa, what is the new pressure if it is compressed to 35 mL? (50 mL)(110 kPa) = (35 mL)P2 P2 = 157.14 kPa

Charles’ Law Temperature and Volume are directly proportional Temperature must be in °K (°C + 273) V1/T1 = V2/T2 A 250 mL gas sample at 25 °C, what is the new temperature if it is compressed to 175 mL? (250 mL)/(298 K) = (175 mL)/T2 T2 =208.6 °K

Gay-Lussac’s Law Temperature and Pressure are directly proportional Temperature must be in °K (°C + 273) P1/T1 = P2/T2 A gas sample is at 61 °C and .79 atm, what is the new pressure if the temperature changes to 117 °C? (.79 atm)/(334 K) = P2 /(390 K) P2 = .92 atm

Combined Gas Law Combines previous three laws Temperature must be in °K (°C + 273) P1V1/T1 = P2 V2/T2 A 315 mL gas sample is at 12 °C and .98 atm, what is the new pressure if the temperature changes to 47 °C and the volume to 415 mL? (.98 atm)(315 mL)/(285 K) = P2(415 mL)/(320 K) P2 = .84 atm

Ideal Gas Law Shows relationship between moles, pressure, temperature, and volume PV=nRT Temperature must be in °K (°C + 273) n = moles R = constant (.0821 atm L /mol °K) What is the volume of a 2.5 mole sample of oxygen at 2.1 atm and 78 °C? (2.1atm)V = (2.5 mol)(.0821 atm L/mol °K)(351 °K) V = 34.31 L