Chapter 24 Capacitance, Dielectrics, Electric Energy Storage

Slides:



Advertisements
Similar presentations
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Advertisements

Chapter 25. Capacitance What is Physics? Capacitance
CH25.Problems Capacitance JH.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 24 Capacitance, dielectrics and electric energy storage
Capacitance Chapter 18 – Part II C Two parallel flat plates that store CHARGE is called a capacitor. The plates have dimensions >>d, the plate separation.
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Capacitance and Dielectrics
17-7 Capacitance A device that stores electric charge Two plates that are separated by an insulator Used in electronic circuits Store charge that can later.
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
(Capacitance and capacitors)
Copyright © 2009 Pearson Education, Inc. Lecture 5 - Capacitance Capacitors & Dielectrics.
Dr. Jie ZouPHY Chapter 26 Capacitance and Dielectrics.
Physics 1402: Lecture 7 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
1 TOPIC 5 Capacitors and Dielectrics. 2 Capacitors are a means of storing electric charge (and electric energy) It takes energy to bring charge together.
Copyright © 2009 Pearson Education, Inc. Admin: No assignment this week Discussion sections run as usual No labs in the week after spring break. Still.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Capacitance and Dielectrics
 Devices that can store electric charge are called capacitors.  Capacitors consist of 2 conducting plates separated by a small distance containing an.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
Electric Potential. Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative – potential energy can be defined.
Capacitance and Dielectrics
Lecture 17 Problems & Solution(1). [1] What is the magnitude of the current flowing in the circuit shown in Fig. 2? [2] A copper wire has resistance 5.
Chapter 17 Electric Potential. Objectives: The students will be able to: Given the dimensions, distance between the plates, and the dielectric constant.
Monday, Sept. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Monday, Sept. 26, 2005 Dr. Jaehoon Yu Capacitors Determination.
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
P212c25: 1 Chapter 25: Capacitance and Dielectrics Capacitor: two conductors (separated by an insulator) usually oppositely charged a +Q b -Q V ab proportional.
-Capacitors and Capacitance AP Physics C Mrs. Coyle.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
Capacitance PHY 2049 Chapter 25 Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Capacitance, Dielectrics, Electric Energy Storage
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Capacitor Device that can store electric charge Two conducting objects are placed near one another but not touching Power source charges up the plates,
Wednesday, Sep. 20, PHYS Ian Howley PHYS 1444 – Section 003 Lecture #8 Thursday Sep. 20, 2012 Ian Howley Chapter 24 Capacitors and Capacitance.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Chapter 24: Capacitance and Dielectrics
Capacitors in Series & Parallel
GOVERNMENT ENGINEERING COLLEGE GODHRA
Capacitance & Dielectrics
Capacitance and Dielectrics
Electric Potential Energy of a Charge (continued)
Capacitance and Dielectric
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The.
Capacitors in Series & Parallel
17.1 Electric potential Energy
Capacitors Calculating capacitance Energy stored in a capacitor
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Fig 26-CO All of these devices are capacitors, which store electric charge and energy. A capacitor is one type of circuit element that we can combine with.
Phys102 Lecture 7/8 Capacitors
PHYS 1444 – Section 002 Lecture #10
PHYS 1444 – Section 003 Lecture #8
PHYS 1444 – Section 002 Lecture #10
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The capacitance.
CAPACITORS Part I February 12, 2007.
Capacitance PHY 2049 Chapter 25.
Capacitance PHY 2049 Chapter 25.
Lab: AC Circuits Integrated Science II.
PHYS 1444 – Section 02 Lecture #7
Presentation transcript:

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage HW 5, Chapter 24: Pb.6, Pb.8, Pb.16, Pb.27, Pb.32, Pb.37-Due Friday March 22 Chapter 24 opener. Capacitors come in a wide range of sizes and shapes, only a few of which are shown here. A capacitor is basically two conductors that do not touch, and which therefore can store charge of opposite sign on its two conductors. Capacitors are used in a wide variety of circuits, as we shall see in this and later Chapters.

24-1 Capacitors A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Figure 24-1. Capacitors: diagrams of (a) parallel plate, (b) cylindrical (rolled up parallel plate).

24-1 Capacitors Parallel-plate capacitor connected to battery. (b) is a circuit diagram. Figure 24-2. (a) Parallel-plate capacitor connected to a battery. (b) Same circuit shown using symbols.

24-1 Capacitors When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: The quantity C is called the capacitance. Unit of capacitance: the farad (F): 1 F = 1 C/V.

Problem 5 5. (II) A 7.7µF capacitor is charged by a 125-V battery (Fig. 24–20a) and then is disconnected from the battery. When this capacitor (C1) is then connected (Fig. 24–20b) to a second (initially uncharged) capacitor, the final voltage on each capacitor is 15V. What is the value of C2 [Hint: Charge is conserved.]

Problem 7 7. (II) It takes 15 J of energy to move a 0.20-mC charge from one plate of a 15µF capacitor to the other. How much charge is on each plate?

Problem 17 17. (II) How strong is the electric field between the plates of a 0.80µF air-gap capacitor if they are 2.0 mm apart and each has a charge of 92µC?

24-2 Determination of Capacitance Capacitors are now made with capacitances of 1 farad or more, but they are not parallel-plate capacitors. Instead, they are activated carbon, which acts as a capacitor on a very small scale. The capacitance of 0.1 g of activated carbon is about 1 farad. Some computer keyboards use capacitors; depressing the key changes the capacitance, which is detected in a circuit. Figure 24-5. Key on a computer keyboard. Pressing the key reduces the capacitor spacing thus increasing the capacitance which can be detected electronically.

24-2 Determination of Capacitance   Figure 24-4. Parallel-plate capacitor, each of whose plates has area A. Fringing of the field is ignored.

Question While a parallel plate capacitor is attached to a battery, the plates are separated a little more so that +Q -Q a) E increases and Q decreases b) E remains constant and Q increases c) E remains constant and Q decreases d) E decreases and Q decreases E V

Question While a parallel plate capacitor is attached to a battery, the plates are separated a little more so that +Q -Q a) E increases and Q decreases b) E remains constant and Q increases c) E remains constant and Q decreases d) E decreases and Q decreases E • C and Q decrease V • Q and E decrease

24-2 Determination of Capacitance Example 24-1: Capacitor calculations. (a) Calculate the capacitance of a parallel-plate capacitor whose plates are 20 cm × 3.0 cm and are separated by a 1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected across the two plates? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1 F, given the same air gap d. Solution: a. C = 53 pF. b. Q = CV = 6.4 x 10-10 C. c. E = V/d = 1.2 x 104 V/m. d. A = Cd/ε0 = 108 m2.

24-2 Determination of Capacitance Example 24-2: Cylindrical capacitor. A cylindrical capacitor consists of a cylinder (or wire) of radius Rb surrounded by a coaxial cylindrical shell of inner radius Ra. Both cylinders have length which we assume is much greater than the separation of the cylinders, so we can neglect end effects. The capacitor is charged (by connecting it to a battery) so that one cylinder has a charge +Q (say, the inner one) and the other one a charge –Q. Determine a formula for the capacitance. Figure 24-6. (a) Cylindrical capacitor consists of two coaxial cylindrical conductors. (b) The electric field lines are shown in cross-sectional view. Solution: We need to find the potential difference between the cylinders; we can do this by integrating the field (which was calculated for a long wire already). The field is proportional to 1/R, so the potential is proportional to ln Ra/Rb. Then C = Q/V.