Payerne station operations

Slides:



Advertisements
Similar presentations
Misura del vapor dacqua in atmosfera mediante Lidar Raman F.Congeduti, P.DAulerio, T.Colavitto, P.Sanò, F.Cardillo (CNR, Istituto di Scienze dellAtmosfera.
Advertisements

Radar/lidar observations of boundary layer clouds
Long-term monitoring of the tropospheric aerosol vertical structure and optical properties by active and passive remote- sensing at Ny-Aalesund, Svalbard.
Consiglio Nazionale delle Ricerche 3 rd COPS and GOP workshop April 2006 Consiglio Nazionale delle Ricerche Istituto di Metodologie per lAnalisi.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Lecture 12 Content LIDAR 4/15/2017 GEM 3366.
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
Work Package 2 – Overview of instrumentation, data gathering and calibration issues Lidar Calibration Ewan O’Connor, Anthony Illingworth and Robin Hogan.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Atmospheric Measurements at Capel Dewi field station Prof. Geraint Vaughan.
TReSS (Transportable Remote Sensing Station) in Tamanrasset Overview of TReSS Status of implementation on April 1 st 2006 Operations in the framework of.
6 July 2006First NDACC Water Vapor Working Group Workshop, Bern, Switzerland. 1 NDACC and Water Vapor Raman Lidars Thierry Leblanc JPL - Table Mountain.
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
LIDAR network F.Fierli, C. Flamant, F. Cairo. Scientific Task for SOP ● provide the aerosol content before convection episodes to improve the estimate.
Balloon-Borne Sounding System (BBSS) Used for atmospheric profiling Measures P, T, RH, wind speed and direction Uncertainties arise from incorrect surface.
Scanning Raman Lidar Error Characteristics and Calibration For IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata,
LIDAR Light Detection and Ranging Kate Whalen PHY 3903 Nov. 25, 2005.
Ben Kravitz November 5, 2009 LIDAR. What is LIDAR? Stands for LIght Detection And Ranging Micropulse LASERs Measurements of (usually) backscatter from.
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
Cloudnet meeting Oct Martial Haeffelin SIRTA Cloud and Radiation Observatory M. Haeffelin, A. Armstrong, L. Barthès, O. Bock, C. Boitel, D.
David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC
Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
Lidar Profiling of the Atmosphere
GEWEX/GlobVapour Workshop, Mar 8-10, 2011, ESRIN, Frascati, Italy WATER VAPOUR RAMAN LIDARS IN THE UTLS: Where Are We Now? or “The JPL-Table Mountain Experience”
CCN measurements at an urban location Julia Burkart University of Vienna Istitute of Aerosol Physics, Biophysics and Environmental Physics.
Sensitivity of Methane Lifetime to Sulfate Geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP) Giovanni Pitari V. Aquila,
CREST Lidar Network (CLN)
SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique Martial Haeffelin SIRTA Coordinator CLOUDNET Meeting, Paris May 2002.
Operation of Backscatter Lidar at Buenos Aires (34.6 S / 58.5 W) for the Retrieval and Analysis the Atmospheric Parameters in Cirrus Clouds, Tropopause.
B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Active Remote Sensing Summer 2007 Björn-Martin Sinnhuber Room NW1.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based Measurements and Campaign Database Subgroup Comparisons with GOMOS air-density.
Berechnung von Temperaturen aus Lidar-Daten Michael Gerding Leibniz-Institut für Atmosphärenphysik.
GSFC STROZ Lidar at MOHAVE 2009 Laurence Twigg, Thomas J. McGee and Grant Sumnicht Code 613.3, Goddard Space Flight Center MOHAVE 2009 Water Vapor Workshop.
Observations of aerosol concentration, properties and chemical composition Sandro Fuzzi Institute for Atmospheric Sciences and Climate National Research.
LIDAR- Light Detection and Ranging  Lidar = “laser-radar”  RADAR-wavelengths: mm, cm  LIDAR-wavelengths: 250 nm-10 μm  Principle: short energetic pulses.
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
AIRS science team meeting Camp Springs, February 2003 Holger Vömel University of Colorado and NOAA/CMDL Upper tropospheric humidity validation measurements.
Institute of Atmospheric Physic
Monitoring of Eyjafjallajökull Ash Layer Evolution over Payerne- Switzerland with a Raman Lidar Todor Dinoev, Valentin Simeonov*, and Mark Parlange Swiss.
EUSO Atmospheric Monitoring from Space M.Teshima on behalf of the EUSO collaboration MPI für Physik, München (Werner-Heisenberg-Institut)
A new method for first-principles calibration
Relating Aerosol Mass and Optical Depth in the Southeastern U.S. C. A. Brock, N. L. Wagner, A. M. Middlebrook, T. D. Gordon, and D. M. Murphy Earth System.
Atmospheric Measurements: The Next Generation Laser Remote Sensor Russell Philbrick and Hans Hallen Physics Department and MEAS Department, NC State University,
Ceilometer absolute calibration to calculate aerosol extensive properties Giovanni Martucci Alexander Marc de Huu Martin Tschannen.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
number Typical aerosol size distribution area volume
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Motivation: Help satellite studies of aerosol-cloud interactions Aerosol remote sensing near clouds is challenging Excluding areas near-cloud risks biases.
Early VALIDAR Case Study Results Rod Frehlich: RAL/NCAR Grady Koch: NASA Langley.
Latmos UPMC/CNRS - ILRC 2015
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Seasonal variability of the tropical tropopause dehydration
Analysis of tropospheric ozone long-term lidar and surface measurements at the JPL-Table Mountain Facility site, California Maria J. Granados-Muñoz and.
Regional Radiation Center (RRC) II (Asia)
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
The Earth’s Energy Budget/ Heat Balance
Instrument operation update (NO science)
Eureka Stratospheric Ozone Differential Absorption LIDAR:
M. De Graaf1,2, K. Sarna2, J. Brown3, E. Tenner2, M. Schenkels4, and D
An (almost) unexpected way to detect very thin diffuse (aged
JPL Table Mountain Facility (TMF)
Thule (Greenland) 76.5°N °W
Eureka Stratospheric Ozone Differential Absorption LIDAR revived
NDACC Lidar measurements at OHP
Presentation transcript:

Payerne station operations 2018 NDACC LWG Meeting G. Martucci1, L. Renaud1 and A. Haefele1,2 1 Office Fédérale de Météorologie et Climatologie, MeteoSuisse, Payerne, Suisse 2 Department of Physics and Astronomy, The University of Western Ontario, London, Canada

Remote Sensing group at Payerne LWG NDACC-devoted Remote sensing group leader T,q,AOD Raman LIDAR + sunphotometer Radiation measurement Aerosol hygroscopicity (LIDAR+radiometer) E-PROFILE Windprofiler+ceilometers Ice cloud formation LIDAR+radiosounding Ozone measurements O3 radiometer EUMETNET/EUNADICS Widprofiler+ceilometer

The RAman Lidar for Meteorological Observations - RALMO Laser Nd:YAG 450 mJ @ 355 nm Operated in Payerne, Switzerland Since 2008 Fully automatic Raman lidar Day and nighttime operation Narrow FOV and bandwidth High laser-pulse energy, 450 mJ

Automatic Operations 24/7 Weekly Monthly 6 Monthly Yearly Cleaning Flash lamp exchange after 40 M shots Litron maintenance Air conditioning Raw data archiving telescopes alignment Cooling system Energy measurement (before beam expander) Energy measurement (after beam expander) Cleaning of telescopes Change in 2018: Litron LPY7000 Nd:YAG laser systems Wavelength 355 nm Rep. Frequency 30 Hz Energy @355 nm 450 mJ Pumping flashlamps Operational yes

RALMO data availability last 4 points Q1-Q4 2017.

2017 PRR Temperature statistics RAL vs SRS-C50 -0.25 K

2017 Water Vapor statistics RAL vs SRS-C50 For UTLS validation RS92/RS41 need to be used Δω≈|10%|

Hygroscopicity Hygroscopic growth: Particle size and chemical composition change as function of RH due to water uptake It affects the scattering of the radiation (direct effect) and the cloud microphysics (indirect effect) Hygroscopicity is different for each aerosol type 𝑓𝑋 𝑅𝐻 = 𝑋𝜆(𝑅𝐻) 𝑋𝜆 𝑅𝐻𝑟𝑒𝑓 Enhancement factor:

Hygroscopicity LIDAR measurements of backscatter and RH Homogeneous aerosol layer with enhanced RH Air mass origin is the same at all altitudes. Well mixed layer, i.e. constant profiles of potential temperature (θ) and water vapor mixing ratio (r)

RALMO operations/activities of interest to NDACC in 2017 Continuous real-time measurements, every 30 minutes, of H2O, T Clear-sky nighttime integrated offline measurements of H2O and T New RH real-time measurements troposphere and UTLS Trip to TMF to validate RALMO H2O profiles with GLASS and LidarRun_Client. On-going publications to be submitted summer/fall 2018: PRR Temperature validation since FastCOM OEM PRR Temperature climatology (MeteoSwiss + Western) OEM H2O (MeteoSwiss + Western) 2018: create the HDF matlab routine based on WV template and submit 2008-2018 data to the NDACC server