Chapter 5 Data Link Layer – Hub, Switch

Slides:



Advertisements
Similar presentations
Interconnection: Switching and Bridging CS 4251: Computer Networking II Nick Feamster Fall 2008.
Advertisements

Communication Networks Recitation 3 Bridges & Spanning trees.
University of Calgary – CPSC 441.  We need to break down big networks to sub-LANs  Limited amount of supportable traffic: on single LAN, all stations.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
CPSC 441 TUTORIAL TA: FANG WANG HUBS, SWITCHES AND BRIDGES Parts of the slides contents are courtesy of the following people: Jim Kurose, Keith Ross:
1 Version 3 Module 8 Ethernet Switching. 2 Version 3 Ethernet Switching Ethernet is a shared media –One node can transmit data at a time More nodes increases.
Ethernet Ethernet Advanced Advanced Computer Networks.
5/31/05CS118/Spring051 twisted pair hub 10BaseT, 100BaseT, hub r T= Twisted pair (copper wire) r Nodes connected to a hub, 100m max distance r Hub: physical.
Chapter 8: Local Area Networks: Internetworking. 2 Objectives List the reasons for interconnecting multiple local area network segments and interconnecting.
1 Computer Networks Internetworking Devices. 2 Repeaters Hubs Bridges –Learning algorithms –Problem of closed loops Switches Routers.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
1 Last class r Random Access Protocols m Slotted Aloha m Aloha m CSMA/CD m “Taking Turns” Protocols r Link-Layer Addressing Today r Ethernet, Hubs and.
5: DataLink Layer – Ethernet, Hubs and Switches.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
1 Interconnecting LAN segments Repeaters Hubs Bridges Switches.
1 Chapter 8 Local Area Networks - Internetworking Data Communications and Computer Networks: A Business User’s Approach.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
CECS 474 Computer Network Interoperability Tracy Bradley Maples, Ph.D. Computer Engineering & Computer Science Cal ifornia State University, Long Beach.
Switches in Networking B. Konkoth. Network Traffic  Scalability  Ability to handle growing amount of work  Capability of a system to increase performance.
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
Connecting LANs, Backbone Networks, and Virtual LANs
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Network Devices.
NUS.SOC.CS2105 Ooi Wei Tsang Application Transport Network Link Physical you are here.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer.
Review: –Ethernet What is the MAC protocol in Ethernet? –CSMA/CD –Binary exponential backoff Is there any relationship between the minimum frame size and.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Networks and Protocols CE Week 2a. Network hardware.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
NET 324 D Networks and Communication Department Lec1 : Network Devices.
5: DataLink Layer5c-1 Today r Assign Homework m Ch5 #1,4,5,7,11,12 Due Wednesday October 22 m Ch5 #13-16,18,20 Due Monday, October 27 r Project #2 due.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides.
5: DataLink Layer 5a-1 Bridges and spanning tree protocol Reference: Mainly Peterson-Davie.
CCNA3 Module 4 Brierley Module 4. CCNA3 Module 4 Brierley Topics LAN congestion and its effect on network performance Advantages of LAN segmentation in.
4: DataLink Layer1 Hubs r Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
Introduction to Communication Networks – Dr. Michael Schapira Rothberg A413.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Chapter 3 Part 1 Switching and Bridging
Introduction to Communication Networks – 67594
Chapter 5 Link Layer A note on the use of these ppt slides:
Link Layer 5.1 Introduction and services
MAC Addresses and ARP 32-bit IP address:
Chapter 4 Data Link Layer Switching
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
ARP: Address Resolution Protocol
Chapter 3 Part 1 Switching and Bridging
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
EEC-484/584 Computer Networks
Chapter 6 The Link Layer and LANs
Connecting The Network Layer to Data Link Layer.
EEC-484/584 Computer Networks
18: Ethernet, Hubs, Bridges, Switches
Chapter 15. Connecting Devices
ECE 4450:427/527 - Computer Networks Spring 2017
Link Layer 5.1 Introduction and services
Presentation transcript:

Chapter 5 Data Link Layer – Hub, Switch CMPT 371 Data Communications and Networking Chapter 5 Data Link Layer – Hub, Switch 5: DataLink Layer

Interconnecting with hubs Backbone hub interconnects LAN segments Extends max distance between nodes But individual segment collision domains become one large collision domain hub hub hub hub 5: DataLink Layer

switch with six interfaces hosts have dedicated, direct connection to switch switches buffer packets Ethernet protocol used on each incoming link, but no collisions; full duplex each link is its own collision domain switching: A-to-A’ and B-to-B’ can transmit simultaneously, without collisions switch with six interfaces (1,2,3,4,5,6) A A’ B B’ C C’ 1 2 3 4 5 6 5: DataLink Layer

switch with six interfaces Forwarding Q: how does switch know A’ reachable via interface 4, B’ reachable via interface 5? switch with six interfaces (1,2,3,4,5,6) A A’ B B’ C C’ 1 2 3 4 5 6 A: each switch has a switch table, each entry: (MAC address of host, interface to reach host, time stamp) looks like a routing table! Q: how are entries created, maintained in switch table? something like a routing protocol? 5: DataLink Layer

Self learning A switch has a switch (forwarding) table switch learns which hosts can be reached through which interfaces when frame received, switch “learns” location of sender: incoming LAN segment records sender/location pair in switch table MAC addr interface TTL A 1 60 Switch table (initially empty) 5: DataLink Layer

Filtering/Forwarding When switch receives a frame: index switch table using MAC dest address if entry found for destination then{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived 5: DataLink Layer

Switch example Suppose C sends frame to D Switch receives frame from C address interface switch 1 A B E G 1 2 3 2 3 hub hub hub A I D F B G C H E Switch receives frame from C notes in switch table that C is on interface 1 because D is not in table, switch forwards frame into interfaces 2 and 3 frame received by D 5: DataLink Layer

Switch example Suppose D replies back with frame to C. address interface switch A B E G C 1 2 3 hub hub hub A I D F B G C H E Switch receives frame from from D notes in switch table that D is on interface 2 because C is in table, switch forwards frame only to interface 1 frame received by C 5: DataLink Layer

Switch: traffic isolation switch installation breaks subnet into LAN segments switch filters packets: same-LAN-segment frames not usually forwarded onto other LAN segments segments become separate collision domains hub switch collision domain collision domain collision domain 5: DataLink Layer

Institutional network mail server to external network web server router switch IP subnet hub hub hub 5: DataLink Layer

Summary comparison 5: DataLink Layer