Revised tholin profile for the atmosphere of Titan

Slides:



Advertisements
Similar presentations
Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
Advertisements

Photochemistry in the Atmospheres of Hot Jupiters Yuk L. Yung 1, Mao-Chang Liang 2, Michael Line 1 and Giovanna Tinetti 3 1 Division of Geological and.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
ABSORPTION BANDS The many absorption bands at 2.3  m ( cm -1 ) and the one band near 1.6  m (6000 cm -1 ) will be considered (Figure 1). Other.
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
2002 PLUTO OCCULTATIONS J. Elliot et al. Observations were made of an occultation of the star by Pluto. Previous observations in 1988 showed an isothermal.
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Deuterated Methane and Ethane in the Atmosphere of Jupiter Christopher D. Parkinson 1,2, Anthony Y.-T. Lee 1, Yuk L. Yung 1, and David Crisp 2 1 Division.
Laboratory Mass Spectrometry Facility TNA 7 and JRA 15 Activity PI: R. Thissen (LPG, Grenoble, France) List of laboratories: - LPG (Grenoble, France) -
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
Liang and Yung, Isotopic Constraints on the Global Budget and Trend of Atmospheric Nitrous Oxide Isotopic Constraints on the Global Budget and Trend of.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
Abstract: A simple representative model of the ionosphere of Mars is fit to the complete set of electron density profiles from the Mars Global Surveyor.
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Moons of Saturn 14 October Iapetus Mimas.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Stratospheric Circulation of Jupiter Xi Zhang 1,2 R. L. Shia 2, A. P. Showman 1, and Y. L. Yung 2 1 LPL, University of Arizona, United States 2 California.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Jovian Stratospheric Circulation: Insights from Cassini Observations X. Zhang (1), R. Cosentino (2), R. Morales-Juberias (2), R. A. West (3), S. Coffing.
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
Liang and Yung, Isotopic Constraints on the Global Budget and Trend of Atmospheric Nitrous Oxide Isotopic Constraints on the Global Budget and Trend of.
Atmospheric extinction Suppose that Earth’s atmosphere has mass absorption coefficient  at wavelength. If f 0 is flux of incoming beam above atmosphere,
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
The Composition and Structure of Enceladus’ Plume from the Cassini UVIS Solar Occultation C. J. Hansen, L. Esposito, D. Shemansky, A. I. F. Stewart, A.
Enceladus’ Plume and Jets: UVIS Occultation Observations June 2011.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Enceladus Plume Update C. J. Hansen, I. Stewart, L. Esposito, A. Hendrix June 2009.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
R. A. WEST, J. M. AJELLO, M. H. STEVENS, D. F. STROBEL, G. R. GLADSTONE, J.S. EVANS, T. BRADLEY, TITAN AIRGLOW DURING ECLIPSE 19 June 2012R. West 1.
Quarterly 1 NASA Quarterly UVIS Q (February – April 2014)
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan Airglow: FUV & EUV 2009 UVIS Spectra of Airglow During Day, Night & Eclipse : JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JPL JACQUES GUSTIN.
Enceladus water jet models from UVIS star occultations
Icy Moon Occultations: the Search for Volatiles
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Cassini UVIS Results on the Enceladus Plume and Spacecraft Safety
Analysis of Density Waves in UVIS Ring Stellar Occultations
Possible plumes at Europa, Observed by Cassini?
UVIS Saturn Atmosphere Occultation Prospectus
UVIS Data Analysis and Modeling: Saturn FUV images
Latest Results of HDAC analysis
HDAC analysis: Hydrogen in Titan‘s exosphere
Titan: FUV & EUV Spectra Limb, Dayglow, Nightglow & Eclipse
Photochemical processes on Titan
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Titan H2O Clouds + ISS/UVIS
Monitoring Saturn's Upper Atmosphere Density Variations Using
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
Presentation transcript:

Revised tholin profile for the atmosphere of Titan Mao-Chang Liang1, J. A. Kammer, X. Zhang3, D. Shemansky4, Y. L. Yung2 1 Research Center for Environmental Change, Academia Sinica 2 Division of Geological and Planetary Sciences, California Institute of Technology 3 University of Arizona 4 Space Environment Technologies

Lorenz + Mitton 2002

Solar Scattering Stellar Occultation J. Ajello

Cassini UVIS Stellar occultations Solar occultation Aerosol extinction profiles Tb  Vi, Tb  Sco, T21  Eri, T41  CMa (ingress & egress), T47  Uma Solar occultation T0 Scattering spectrum at 1040 km Tholin retrieved for 1850-1900 A, using Khare et al. aerosols

T0 solar reflection spectrum High resolution slit; Integration time 14910 sec; Red line: Effective altitude 1040 km; mid pixel 1203 km Green line: Effective altitude 1612 km Cyan line: best fitting model spectrum

TB UVIS extinction spectrum tholin CH4 Impact: 514 km Liang et al. 2007

UVIS extinction profiles

Modeling – No production/loss 10-15 g cm-2 s-1 10-4 g cm-3 D~1.3 10-3 g cm-3 D~1.5 ~10-4 g cm-3 76 A -> ~300 A Fractal dimension 1.5 76 A 76 A -> ~500 A 76 A eddy

Extinction coefficient (Mie + Khare et al.) Extinction not sensitive to fractal dimension but scattering does Particle radius (A)

Solution #1 – C2H2 -> tholin 310-15 g cm-2 s-1 10-15 g cm-2 s-1 size increase 76 A -> ~500 A 310-15 g cm-2 s-1

Solution #2 – C6N2 -> tholin ~210-15 g cm-2 s-1 Psat(C6N2) Liang et al. (2007)

Lavvas et al. (2011) model Lavvas et al. UVIS T41 UVIS T0 310-14 g cm-2 s-1 D~3 UVIS T0 Lavvas et al. UVIS T41

Fractal particles Aggregate of molecules at ~1000 km UVIS at ~400 km monomer: 8 A Mie radius: 76 A density: ~10-4 g cm-3 -> fractal dimension: ~1.3 UVIS at ~400 km size increase to ~50 nm ISS at ~520 km size ~40 nm fractal dimension <2 Main haze (<300 km) monomer: 66 nm fractal dimension: 2

Summary Low density fractal particle Particle size of 76 A at 1040 km ~10-4 g cm-3 above ~800 km Particle size of 76 A at 1040 km Increase to ~500 A below ~400 km, compared to 660 A monomer size below 300 km Mass flux from the top is ~10-15 g cm-2