Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.

Slides:



Advertisements
Similar presentations
Gauss’s Law Electric Flux
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Physics 24-Winter 2003-L031 Gausss Law Basic Concepts Electric Flux Gausss Law Applications of Gausss Law Conductors in Equilibrium.
Applications of Gauss’s Law
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Chapter 23 Gauss’ Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Chapter 24 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec &.3) Gauss’s Law (sec &.5) Charges on conductors(sec. 22.6) C 2012 J. Becker.
Chapter 23 Gauss’s Law.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
Charles Allison © 2000 Chapter 22 Gauss’s Law HW# 5 : Chap.22: Pb.1, Pb.6, Pb.24, Pb.27, Pb.35, Pb.46 Due Friday: Friday, Feb 27.
1 W02D2 Gauss’s Law. 2 From Last Class Electric Field Using Coulomb and Integrating 1) Dipole: E falls off like 1/r 3 1) Spherical charge:E falls off.
Gauss’ Law. Class Objectives Introduce the idea of the Gauss’ law as another method to calculate the electric field. Understand that the previous method.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Gauss’s law : introduction
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Electric Charge and Electric Field
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Electric Flux and Gauss Law
Gauss’sLaw 1 P05 - The first Maxwell Equation A very useful computational technique This is important!
1 Gauss’s Law For r > a Reading: Chapter Gauss’s Law Chapter 28.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Gauss’s Law Chapter 21 Summary Sheet 2. EXERCISE: Draw electric field vectors due to the point charge shown, at A, B and C +.. B. A C Now draw field lines.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
CHAPTER 24 : GAUSS’S LAW 24.1) ELECTRIC FLUX
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Chapter 24 Gauss’s Law. Intro Gauss’s Law is an alternative method for determining electric fields. While it stem’s from Coulomb’s law, Gauss’s law is.
W02D2 Gauss’s Law Class 02.
A b c. Choose either or And E constant over surface is just the area of the Gaussian surface over which we are integrating. Gauss’ Law This equation can.
Unit 1 Day 11: Applications of Gauss’s Law Spherical Conducting Shell A Long Uniform Line of Charge An Infinitely Large, Thin Plane of Charge Experimental.
3/21/20161 ELECTRICITY AND MAGNETISM Phy 220 Chapter2: Gauss’s Law.
Gauss’ Law Chapter 23. Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q.
Copyright © 2009 Pearson Education, Inc. Applications of Gauss’s Law.
Chapter 22 Gauss’s Law HW 3: Chapter 22: Pb.1, Pb.6, Pb.24,
24.2 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
4. Gauss’s law Units: 4.1 Electric flux Uniform electric field
Gauss’s Law Basic Concepts Electric Flux Gauss’s Law
Physics 212 Lecture 4 Gauss’ Law.
Gauss’s Law Chapter 24.
Problem-Solving Guide for Gauss’s Law
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
Electric Flux & Gauss Law
Gauss’s Law Electric Flux
PHYS 1444 – Section 003 Lecture #5
Reading: Chapter 28 For r > a Gauss’s Law.
Chapter 23 Electric Potential
TOPIC 3 Gauss’s Law.
Chapter 21 Gauss’s Law.
Gauss’s Law Electric Flux
Chapter 22 Gauss’s Law HW 4: Chapter 22: Pb.1, Pb.6, Pb.24,
Gauss’s Law Chapter 24.
Chapter 23 Gauss’s Law.
Question for the day Can the magnitude of the electric charge be calculated from the strength of the electric field it creates?
Gauss’s Law (II) Examples: charged spherical shell, infinite plane,
Last Lecture This lecture Gauss’s law Using Gauss’s law for:
Phys102 Lecture 3 Gauss’s Law
Gauss’s Law Chapter 21 Summary Sheet 2.
Chapter 23 Gauss’s Law.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Example 24-2: flux through a cube of a uniform electric field
Applying Gauss’s Law Gauss’s law is useful only when the electric field is constant on a given surface 1. Select Gauss surface In this case a cylindrical.
Chapter 23 Gauss’s Law.
Presentation transcript:

Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s law. Gauss’s law involves an integral of the electric field E at each point on a closed surface. The surface is only imaginary, and we choose the shape and placement of the surface so that we can figure out the integral. In this drawing, two different surfaces are shown, both enclosing a point charge Q. Gauss’s law states that the product E·dA, where dA is an infinitesimal area of the surface, integrated over the entire surface, equals the charge enclosed by the surface Qencl divided by ε0. Both surfaces here enclose the same charge Q. Hence ∫E·dA will give the same result for both surfaces.

22-3 Applications of Gauss’s Law Example 22-6: Long uniform line of charge. A very long straight wire possesses a uniform positive charge per unit length, λ. Calculate the electric field at points near (but outside) the wire, far from the ends. Solution: If the wire is essentially infinite, it has cylindrical symmetry and we expect the field to be perpendicular to the wire everywhere. Therefore, a cylindrical gaussian surface will allow the easiest calculation of the field. The field is parallel to the ends and constant over the curved surface; integrating over the curved surface gives E = λ/2πε0R.

22-3 Applications of Gauss’s Law Example 22-7: Infinite plane of charge. Charge is distributed uniformly, with a surface charge density σ (σ = charge per unit area = dQ/dA) over a very large but very thin nonconducting flat plane surface. Determine the electric field at points near the plane. Solution: We expect E to be perpendicular to the plane, and choose a cylindrical gaussian surface with its flat sides parallel to the plane. The field is parallel to the curved side; integrating over the flat sides gives E = σ/2ε0.

Problem 24

22-3 Applications of Gauss’s Law Example 22-8: Electric field near any conducting surface. Show that the electric field just outside the surface of any good conductor of arbitrary shape is given by E = σ/ε0 where σ is the surface charge density on the conductor’s surface at that point. Solution: Again we choose a cylindrical gaussian surface. Now, however, the field inside the conductor is zero, so we only have a nonzero integral over one surface of the cylinder. Integrating gives E = σ/ε0.

22-3 Applications of Gauss’s Law The difference between the electric field outside a conducting plane of charge and outside a non-conducting plane of charge can be thought of in two ways: The field inside the conductor is zero, so the flux is all through one end of the cylinder. The conducting plane has a total charge density σ, whereas the non-conducting plane has a charge density σ on each side, effectively giving it twice the charge density.

22-3 Applications of Gauss’s Law Procedure for Gauss’s law problems: Identify the symmetry, and choose a Gaussian surface that takes advantage of it (with surfaces along surfaces of constant field). Draw the surface. Use the symmetry to find the direction of E. Evaluate the flux by integrating. Calculate the enclosed charge. Solve for the field.