GENERAL & RECTANGULAR COMPONENTS

Slides:



Advertisements
Similar presentations
CURVILINEAR MOTION: CYLINDRICAL COMPONENTS (Section 12.8)
Advertisements

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections )
CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Today’s Objectives: Students will be able to: 1.Determine velocity and acceleration components using cylindrical.
CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Today’s Objectives: Students will be able to: 1.Determine velocity and acceleration components using cylindrical.
King Fahd University of Petroleum & Minerals Mechanical Engineering Dynamics ME 201 BY Dr. Meyassar N. Al-Haddad Lecture # 3.
GENERAL & RECTANGULAR COMPONENTS
RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3) Today’s Objectives: Students will be able to determine position, velocity, and acceleration of a.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3)
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
GENERAL & RECTANGULAR COMPONENTS
Kinematics of Particles
CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS
NORMAL AND TANGENTIAL COMPONENTS
Chapter 2 – kinematics of particles
NORMAL AND TANGENTIAL COMPONENTS
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
Theoretical Mechanics KINEMATICS * Navigation: Right (Down) arrow – next slide Left (Up) arrow – previous slide Esc – Exit Notes and Recommendations:
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. CURVILINEAR.
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. CURVILINEAR.
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections ) Today’s Objectives: Students will be able to: a)Describe the motion of a particle traveling.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Calculate the work of a force.
Normal-Tangential coordinates
Lecture IV Curvilinear Motion.
EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)
Rectilinear Kinematics
RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)
Normal-Tangential coordinates
Introduction & Rectilinear Kinematics:
GENERAL & RECTANGULAR COMPONENTS
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Dr. Venkat Kaushik Phys 211, Lecture 4, Sep 01, 2015
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
NORMAL AND TANGENTIAL COMPONENTS
Two special unit vectors:
– KINEMATIC OF RECTILINEAR MOTION
MOTION OF A PROJECTILE Today’s Objectives: Students will be able to:
RELATIVE MOTION ANALYSIS: VELOCITY
RECTANGULAR COORDINATES
NORMAL AND TANGENTIAL COMPONENTS
Lecture 4 Goals for Chapter 3 & 4 Perform vector algebra
RECTILINEAR KINEMATICS: ERRATIC MOTION
GENERAL & RECTANGULAR COMPONENTS
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RELATIVE MOTION ANALYSIS: VELOCITY
NORMAL AND TANGENTIAL COMPONENTS
RELATIVE MOTION ANALYSIS: ACCELERATION
RELATIVE MOTION ANALYSIS: ACCELERATION
MOTION OF A PROJECTILE Today’s Objectives: Students will be able to:
Physics 207, Lecture 5, Sept. 20 Agenda Chapter 4
RIGID BODY MOTION (Section 16.1)
Kinematics of Particles
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Conceptual Dynamics Part II: Particle Kinematics Chapter 3
RELATIVE MOTION ANALYSIS: VELOCITY
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Describing Motion in 3-D (and 2-D) §3.4–3.5.
MOTION OF A PROJECTILE Today’s Objectives: Students will be able to:
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Describing Motion in 3-D (and 2-D) §3.1–3.2.
Engineering Mechanics : DYNAMIC
Chapter 12 : Kinematics Of A Particle
Presentation transcript:

GENERAL & RECTANGULAR COMPONENTS CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: Describe the motion of a particle traveling along a curved path. Relate kinematic quantities in terms of the rectangular components of the vectors. In-Class Activities: • Check Homework • Reading Quiz • Applications • General Curvilinear Motion • Rectangular Components of Kinematic Vectors • Concept Quiz • Group Problem Solving • Attention Quiz

A) tangent to the hodograph. B) perpendicular to the hodograph. READING QUIZ 1. In curvilinear motion, the direction of the instantaneous velocity is always A) tangent to the hodograph. B) perpendicular to the hodograph. C) tangent to the path. D) perpendicular to the path. 2. In curvilinear motion, the direction of the instantaneous acceleration is always A) tangent to the hodograph. B) perpendicular to the hodograph. C) tangent to the path. D) perpendicular to the path. Answers: 1. C 2. A

APPLICATIONS The path of motion of a plane can be tracked with radar and its x, y, and z coordinates (relative to a point on earth) recorded as a function of time. How can we determine the velocity or acceleration of the plane at any instant?

APPLICATIONS (continued) A roller coaster car travels down a fixed, helical path at a constant speed. How can we determine its position or acceleration at any instant? If you are designing the track, why is it important to be able to predict the acceleration of the car?

GENERAL CURVILINEAR MOTION (Section 12.4) A particle moving along a curved path undergoes curvilinear motion. Since the motion is often three-dimensional, vectors are used to describe the motion. A particle moves along a curve defined by the path function, s. The position of the particle at any instant is designated by the vector r = r(t). Both the magnitude and direction of r may vary with time. If the particle moves a distance Ds along the curve during time interval Dt, the displacement is determined by vector subtraction: D r = r’ - r

VELOCITY Velocity represents the rate of change in the position of a particle. The average velocity of the particle during the time increment Dt is vavg = Dr/Dt . The instantaneous velocity is the time-derivative of position v = dr/dt . The velocity vector, v, is always tangent to the path of motion. The magnitude of v is called the speed. Since the arc length Ds approaches the magnitude of Dr as t→0, the speed can be obtained by differentiating the path function (v = ds/dt). Note that this is not a vector!

ACCELERATION Acceleration represents the rate of change in the velocity of a particle. If a particle’s velocity changes from v to v’ over a time increment Dt, the average acceleration during that increment is: aavg = Dv/Dt = (v - v’)/Dt The instantaneous acceleration is the time-derivative of velocity: a = dv/dt = d2r/dt2 A plot of the locus of points defined by the arrowhead of the velocity vector is called a hodograph. The acceleration vector is tangent to the hodograph, but not, in general, tangent to the path function.

CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Section 12.5) It is often convenient to describe the motion of a particle in terms of its x, y, z or rectangular components, relative to a fixed frame of reference. The position of the particle can be defined at any instant by the position vector r = x i + y j + z k . The x, y, z components may all be functions of time, i.e., x = x(t), y = y(t), and z = z(t) . The magnitude of the position vector is: r = (x2 + y2 + z2)0.5 The direction of r is defined by the unit vector: ur = (1/r)r

The velocity vector is the time derivative of the position vector: RECTANGULAR COMPONENTS: VELOCITY The velocity vector is the time derivative of the position vector: v = dr/dt = d(xi)/dt + d(yj)/dt + d(zk)/dt Since the unit vectors i, j, k are constant in magnitude and direction, this equation reduces to v = vx i + vy j + vz k where vx = = dx/dt, vy = = dy/dt, vz = = dz/dt x y z • The magnitude of the velocity vector is v = [(vx)2 + (vy)2 + (vz)2]0.5 The direction of v is tangent to the path of motion.

vx x vy y vz z RECTANGULAR COMPONENTS: ACCELERATION The acceleration vector is the time derivative of the velocity vector (second derivative of the position vector): a = dv/dt = d2r/dt2 = ax i + ay j + az k where ax = = = dvx /dt, ay = = = dvy /dt, az = = = dvz /dt vx x vy y vz z • •• The magnitude of the acceleration vector is a = [(ax)2 + (ay)2 + (az)2 ]0.5 The direction of a is usually not tangent to the path of the particle.

EXAMPLE Given: The motion of two particles (A and B) is described by the position vectors rA = [3t i + 9t(2 – t) j] m and rB = [3(t2 –2t +2) i + 3(t – 2) j] m. Find: The point at which the particles collide and their speeds just before the collision. Plan: 1) The particles will collide when their position vectors are equal, or rA = rB . 2) Their speeds can be determined by differentiating the position vectors.

EXAMPLE (continued) Solution: 1) The point of collision requires that rA = rB, so xA = xB and yA = yB . Set the x-components equal: 3t = 3(t2 – 2t + 2) Simplifying: t2 – 3t + 2 = 0 Solving: t = {3  [32 – 4(1)(2)]0.5}/2(1) => t = 2 or 1 s Set the y-components equal: 9t(2 – t) = 3(t – 2) Simplifying: 3t2 – 5t – 2 = 0 Solving: t = {5  [52 – 4(3)(–2)]0.5}/2(3) => t = 2 or – 1/3 s So, the particles collide when t = 2 s (only common time). Substituting this value into rA or rB yields xA = xB = 6 m and yA = yB = 0

2) Differentiate rA and rB to get the velocity vectors. EXAMPLE (continued) 2) Differentiate rA and rB to get the velocity vectors. vA = drA/dt = = [ 3 i + (18 – 18t) j ] m/s At t = 2 s: vA = [ 3i – 18 j ] m/s j yA i xA . + • vB = drB/dt = xB i + yB j = [ (6t – 6) i + 3 j ] m/s At t = 2 s: vB = [ 6 i + 3 j ] m/s • • Speed is the magnitude of the velocity vector. vA = (32 + 182) 0.5 = 18.2 m/s vB = (62 + 32) 0.5 = 6.71 m/s

CHECK YOUR UNDERSTANDING QUIZ 1. If the position of a particle is defined by r = [(1.5t2 + 1) i + (4t – 1) j ] (m), its speed at t = 1 s is A) 2 m/s B) 3 m/s C) 5 m/s D) 7 m/s 2. The path of a particle is defined by y = 0.5x2. If the component of its velocity along the x-axis at x = 2 m is vx = 1 m/s, its velocity component along the y-axis at this position is A) 0.25 m/s B) 0.5 m/s C) 1 m/s D) 2 m/s Answers: 1. C 2. D

GROUP PROBLEM SOLVING Given: The velocity of the particle is v = [ 16 t2 i + 4 t3 j + (5 t + 2) k] m/s. When t = 0, x = y = z = 0. Find: The particle’s coordinate position and the magnitude of its acceleration when t = 2 s. Plan: Note that velocity vector is given as a function of time. 1) Determine the position and acceleration by integrating and differentiating v, respectively, using the initial conditions. 2) Determine the magnitude of the acceleration vector using t = 2 s.

GROUP PROBLEM SOLVING (continued) Solution: 1) x-components: Velocity known as: vx = x = dx/dt = (16 t2 ) m/s Position: = (16 t2) dt  x = (16/3)t3 = 42.7 m at t = 2 s Acceleration: ax = x = vx = d/dt (16 t2) = 32 t = 64 m/s2 •• ò x dx t • 2) y-components: Velocity known as: vy = y = dy/dt = (4 t3 ) m/s Position: = (4 t3) dt  y = t4 = (16) m at t = 2 s Acceleration: ay = y = vy = d/dt (4 t3) = 12 t2 = 48 m/s2 •• ò y dy t •

GROUP PROBLEM SOLVING (continued) 3) z-components: Velocity is known as: vz = z = dz/dt = (5 t + 2) m/s Position: = (5 t + 2) dt  z = (5/2) t2 + 2t = 14 m at t=2s Acceleration: az = z = vz = d/dt (5 t + 2) = 5 m/s2 •• ò z dz t • 4) The position vector and magnitude of the acceleration vector are written using the component information found above. Position vector: r = [ 42.7 i + 16 j + 14 k] m. Acceleration vector: a = [ 64 i + 48 j + 5 k] m/s2 Magnitude: a = (642 + 482 +52)0.5 = 80.2 m/s2

A) (4 i +8 j ) m/s2 B) (8 i -16 j ) m/s2 C) (8 i) m/s2 D) (8 j ) m/s2 ATTENTION QUIZ 1. If a particle has moved from A to B along the circular path in 4s, what is the average velocity of the particle ? A) 2.5 i m/s B) 2.5 i +1.25j m/s C) 1.25  i m/s D) 1.25  j m/s A B R=5m x y 2. The position of a particle is given as r = (4t2 i - 2x j) m. Determine the particle’s acceleration. A) (4 i +8 j ) m/s2 B) (8 i -16 j ) m/s2 C) (8 i) m/s2 D) (8 j ) m/s2 Answers: 1. A 2. B

End of the Lecture Let Learning Continue