Access to Science: Chemistry

Slides:



Advertisements
Similar presentations
Organic Synthesis Notation
Advertisements

High Level Organic Chemistry
Advanced Higher Chemistry
ORGANIC CHEMISTRY HYDROCARBONS Examples of Alkenes ETHENE, C 2 H 4 H C C H OR CH 2 CH 2 PROPENE CH 2 CH CH 3 TASK: Use ball & stick models or sketches.
Organic Reactions Larry Scheffler Lincoln High School IB Chemistry 3-4 Version
ORGANIC CHEMISTRY AS CHEM. STUDY GUIDE. DEFINE FREE RADICALS Atoms (or groups of atoms) with unpaired electrons.
Chapter 3 Alkenes and Alkynes
Alkenes. Introduction Alkenes are unsaturated hydrocarbons that contain one or more carbon-carbon double bonds C=C, in their structures Alkenes have the.
Chapter 12: Unsaturated Hydrocarbons
Chapter 12: Unsaturated Hydrocarbons
Introduction to Organic Chemistry. Contents Nomenclature and Isomerism Petroleum and Alkanes Alkenes and Epoxyethane Haloalkanes Alcohols.
Chapter 12 Unsaturated Hydrocarbons Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
LecturePLUS Timberlake1 Alkenes and Alkynes Geometric Isomers of Alkenes Addition Reactions.
Alkenes. Alkenes/Alkynes Compounds that contain carbon and hydrogen Alkenes have a double bond General formula of C n H 2n Alkynes have a triple bond.
Alkenes and Cycloalkenes
Organic Reactions Larry Scheffler Lincoln High School IB Chemistry 3-4 Version
Organic Reactions Version 1.4. Reaction Pathways and mechanisms Most organic reactions proceed by a defined sequence or set of steps. The detailed pathway.
Describe the structural formulae and reactions of compounds containing selected functional groups 4 credits.
Chapter 12 Unsaturated Hydrocarbons Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
ORGANIC MECHNISMS. MEET THE ATTACKERS Press the space bar.
Alkanes and Alkenes Topic 10.2 and Alkanes have low reactivity bond enthalpies are relatively strong 348 kJ mol -1 to break a C-C bond 412 kJ mol.
Organic Chemistry …Alkenes…. Alkenes  Hydrocarbons with one or more double bonds  “Unsaturated” Have fewer than the maximum amount of hydrogens Have.
Title: Lesson 4 Alkenes Learning Objectives:
Properties and reactions of Alkenes
Organic Chemistry Chapter 22. Hydrocarbons Alkanes Saturated  Relatively unreactive due to the strong C-C and C-H bonds  Contains all C-C single bonds.
10.3 Alkenes. References Assessment Objectives Describe, using equations the reactions of alkenes with hydrogen and halogens Describe,
Electrophilic addition 2 LO Understand the electrophilic addition mechanism involving alkenes and halogens. Understand the electrophilic addition mechanism.
AN INTRODUCTION TO THE CHEMISTRY OF ALKENES AND ELECTROPHILIC ELECTROPHILICADDITIONMECHANISMS.
TOPIC 11 REVIEW BOOK TABLES P, Q AND R Organic Chemistry.
Chapter 23: Organic Chemistry
Organic Chemistry = the study of carbon and most carbon compounds.
Alkanes and Alkenes Topic 10.2 part 1.
10.2 Functional group chemistry
Organic Reactions Topics 10.5, 10.6 & Review
Halogenoalkanes L.O. To be able to name and draw halogenoalkanes.
Chapter 3 Alkenes and Alkynes: The Nature of Organic Reactions
Alkenes and Alkynes.
REVISION MATERIAL FOR PHYSICAL SCIENCES DEFINITIONS: ORGANIC CHEMISTRY
Introduction to organic reactions
Halogenoalkanes and Benzene
Chapter 4—An Introduction to Organic Reactions
Chapter 3 Alkenes and Alkynes: The Nature of Organic Reactions
Reactions with alkenes
Chapter 10.1 & 20.1: Organic Reactions
A Reactions Review FREE RADICAL SUBSTITUTION POLYMERIZATION
Organic Synthesis Unit 2.
1.2 Alkenes & Alkynes.
Chapter 12 Alkenes and Alkynes
Alkenes: Structure and Reactivity
Cycloalkanes Alkanes that form rings are called cycloalkanes.
The mechanism of electrophilic addition reactions
Organic Chemistry = the study of carbon and most carbon compounds.
Organic Chemistry = ______________________ ________________________.
• Explain the overlap of adjacent p-orbitals to form a π-bond.
1,2,3-triiodocyclopropane
Alkanes and Alkenes.
Title: Alkanes and Alkenes Complete the activities listed below
Access to Science: Chemistry
Some more Reactions of Alkanes
15th June 2012 Alkenes AIM – to investigate the physical and chemical properties of alkenes.
Presentation transcript:

Access to Science: Chemistry Ready for learning: Badges on Drinks and food away Bags and coats to one side. Access to Science: Chemistry Have a go at the activity on your bench Organic alkenes

Learning aims: Recall important terms and prior learning. Review alkenes and describe their functional group Describe the structure of alkenes including isomers Outline the mechanism of electrophilic addition to alkenes with bromine and hydrogen bromide Describe a test for unsaturation

Practical results: Test 1: solubility Alkanes and alkenes have little polarity so will only be soluble in non-polar solvents. In polar solvents like water they will not mix – form immiscible layers. Which was the densest? Footer Text 5/14/2019

Synthesising new compounds We saw how: You can make haloalkanes from free radicle substitution reactions with halogens in the presence of UV light: cyclohexane and bromine Haloalkanes can also be made from alcohols, something we will look at next week. Practical: reaction: 2 Footer Text 5/14/2019

Haloalkanes can then undergo reactions to make other useful products Nucleophilic substitution reactions: With strong bases like sodium hydroxide and potassium hydroxide will form alcohols Used as drinks, fuel or solvent. With potassium or sodium cyanide they form nitriles Main use is nitrile rubber, highly chemically resistant. With ammonia they form amines used in medicine – basis for analgesic, decongestants and anaesthesia Footer Text 5/14/2019

Haloalkanes can also undergo elimination reactions Undergo elimination reactions with sodium and potassium hydroxide to give alkenes Alkenes are used as fuel, to make other useful organic chemicals, particularly polymers. Footer Text 5/14/2019

Synthesis map Chemists often produce a synthesis map to show how one functional group can undergo many different reactions to produce other useful chemicals. Footer Text 5/14/2019

Alkenes Alkenes are unsaturated hydrocarbons, which means we can add other atoms to them. Contain at least one double bond between carbon atoms General formula CnH2n Named by replacing the -ane ending by -ene. The position of the double bond is indicated by numbering the chain Footer Text 5/14/2019

Alkenes H C CH2=CH2 CH3 C CH3CH=CH2 H CH3 C CH3CH=CHCH3 H ethene C2H4 propene C CH3 H C3H6 CH3CH=CH2 2-butene or but-2-ene C CH3 H C4H8 CH3CH=CHCH3

Isomers – we have already met. Isomers - same molecular formula -atoms are arranged differently to give different compounds. We have already met structural isomers: Chain isomerism – hydrocarbon chain is arranged differently. Positional isomerism – non-hydrocarbons substituents, or multiple bonds e.g. halogens, are in different places on the hydrocarbon chain. Functional group isomers – same formula isomers have different functional groups aldehydes and ketones. Footer Text 5/14/2019

Positional isomers of butene C4H8 CH2CH3 C CH3 H CH2=CHCH2CH3 CH3CH=CHCH3 but-1-ene but-2-ene

Geometric isomers of but-2-ene CH3 H C CH3 H cis-but-2-ene trans-but-2-ene This type of isomerism arises because unlike the single bonded alkanes, the double bond cannot rotate.

build the geometric isomers of dichloroethene Footer Text 5/14/2019

Reactions of alkenes Alkenes are much more reactive than alkanes because of the double bond where addition reactions occur. They are unsaturated which means the double bond can ‘pop’ open and add other atoms to itself. Addition means that an unsaturated compound becomes saturated Footer Text 5/14/2019

Reaction types: Nucleophilic Substitution – replacement of one functional group with another or a hydrogen atom Elimination – loss of a small molecule We have seen how alkenes can form from elimination of haloalkanes by the hydroxide ion of substance such as KOH. Footer Text 5/14/2019

Alkene reactions: Alkenes undergo electrophilic addition reactions to form new homologous series. Addition – addition of a small molecule across the double bond opposite of elimination. Footer Text 5/14/2019

Alkene functional group C=C The double bond is the functional group of an alkene. This is the reactive centre because it is a region of high electron density due to the double bond, (two pairs of electrons). What do you think electrophilic means? ‘electron-loving’ Partially positive or positively charged species attracted to the electron rich double bond Footer Text 5/14/2019

Addition of hydrogen bromide CH2=CH2 + HBr  CH3CH2Br 1-bromoethane C H + HBr  Br Footer Text 5/14/2019

Hydrogen bromide highly polar molecule reacts with alkenes in an electrophilic addition reaction. Partially positive hydrogen atom attracted to the rich electron dense carbon-carbon double bond. Footer Text 5/14/2019

Electrophilic Addition mechanism Remember curly arrows show the movement of electrons. Partially positive hydrogen atom of HBr, comes close to the highly negative alkene double bond. The electrons are attracted to hydrogen, forming a covalent bond to it. Footer Text 5/14/2019

Electrophilic Addition mechanism This attaches a carbon to a hydrogen atom. The other carbon of the double bond is left with only 3 negative bonds to other atoms, so is left overall positively charged. (carbocation) Footer Text 5/14/2019

Electrophilic Addition mechanism Bromine draws the electrons from the H-Br bond onto itself, becoming negatively charged. The negative charge on Br is attracted to the positively charged carbocation, so it forms a bond with carbon by the donation of an electron pair, leaving the molecule overall neutral   Footer Text 5/14/2019

Stretch and challenge The carbocation intermediate can take different forms depending on how many other carbons are attached either side of it H R R R C H R C H R C R + + + Primary Secondary Tertiary The carbon groups ( R ) attached to the carbocation have an electron donating effect as the carbocation being positively charged draws some of the charge, so stability of the carbocation increases with the number of donating carbon groups attached to the carbocation. Why does this matter? Footer Text 5/14/2019

Asymmetrical addition to propene Addition of HBr to our symmetrical alkene. Underneath is the asymmetrical alkene propene. Asymmetry arises from different substituents on either side of the carbon-carbon double bond. Major product forms from the most substituted carbocation Add hydrogen to the middle carbon atom forms a primary carbocation. Add hydrogen to the end carbon atom the middle carbon forms secondary carbocation Secondary more stable - preferred product. Footer Text 5/14/2019

Electrophilic Addition of bromine CH2=CH2 + Br2  CH2BrCH2Br 1,2-dibromoethane C H + Br2  Br

When an alkene undergoes electrophilic addition with bromine Br-Br non-polar However, double bond repels electrons away from nearest bromine atom, leaving it slightly positively charged. Br – Br polar Footer Text 5/14/2019

Electrons of carbon-carbon double bond attracted to the partial positive charge on bromine and donate their electron pair to it. The Br-Br bond breaks and the electrons add to the furthest bromine atom. The C=C bond breaks a carbocation forms, highly reactive positive charge attracts second bromine atom and a dibromoalkane forms. Footer Text 5/14/2019

Let’s practise some.. Draw the mechanism of the addition of HCl and then Cl2 to ethene Footer Text 5/14/2019

Test for unsaturation – bromine water and cyclohexene or alkene In the presence of a double bond, bromine water will be decolourised from yellow/brown Why do you think this happens? What sort of products will you obtain? Footer Text 5/14/2019

Alkenes undergo many reactions Of notable importance are their reactions to form polymers. http://www.bbc.co.uk/schools/gcsebitesize/science/aqa/substancesfromcrudeoil/alkenesact.shtml Practical test 4 Footer Text 5/14/2019

Poly(ethene) (common name polythene) 3 monomer molecules Polymerisation Compounds containing C=C double bonds can form polymers - long hydrocarbon chains - thousands of atoms long. C H poly(ethene)

The polymerisation process can be represented like this Poly(ethene) (b) n C H monomer polymer (repeating unit) The polymerisation process can be represented like this

Poly(tetrafluoroethene) C F monomer polymer (repeating unit) http://www.bing.com/videos/search?q=making+polymers+from+alkenes&&view=detail&mid=A2E0344212C753C08405A2E0344212C753C08405&rvsmid=5AC5DAF8C4E2885A66065AC5DAF8C4E2885A6606&FORM=VDQVAP&fsscr=0 Here fluorine substituents result in the polymer PTFE Used as Teflon, Gortex, non-stick coatings.

Learning aims: Recall important terms and prior learning. Review alkenes and describe their functional group Describe the structure of alkenes including isomers Outline the mechanism of electrophilic addition to alkenes with bromine and hydrogen bromide