Volume 24, Issue 9, Pages (September 2016)

Slides:



Advertisements
Similar presentations
Networks of Dynamic Allostery Regulate Enzyme Function
Advertisements

Volume 26, Issue 1, Pages (April 2007)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 14, Issue 3, Pages (March 2006)
Volume 20, Issue 11, Pages (November 2012)
Volume 23, Issue 10, Pages (October 2015)
Structural Basis for Dimerization in DNA Recognition by Gal4
Volume 21, Issue 9, Pages (September 2013)
Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, Xuewu Zhang  Structure 
Key Interactions for Clathrin Coat Stability
Volume 22, Issue 11, Pages (November 2014)
Volume 24, Issue 12, Pages (December 2016)
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 18, Issue 8, Pages (August 2010)
HyeongJun Kim, Jen Hsin, Yanxin Liu, Paul R. Selvin, Klaus Schulten 
Volume 24, Issue 11, Pages (November 2016)
Volume 21, Issue 2, Pages (February 2013)
Volume 24, Issue 4, Pages (April 2016)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Leonardus M.I. Koharudin, Angela M. Gronenborn  Structure 
Yuan Yang, Chang Shu, Pingwei Li, Tatyana I. Igumenova 
Volume 18, Issue 9, Pages (September 2010)
Volume 21, Issue 10, Pages (October 2013)
Volume 24, Issue 7, Pages (July 2016)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Volume 20, Issue 12, Pages (December 2012)
Supertertiary Structure of the MAGUK Core from PSD-95
Structural Basis for the Differential Effects of CaBP1 and Calmodulin on CaV1.2 Calcium-Dependent Inactivation  Felix Findeisen, Daniel L. Minor  Structure 
Volume 23, Issue 5, Pages (May 2015)
Volume 18, Issue 6, Pages (June 2010)
Volume 21, Issue 1, Pages (October 2017)
Volume 26, Issue 2, Pages e4 (February 2018)
The Structure of the Tiam1 PDZ Domain/ Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics  Xu Liu, Tyson R. Shepherd,
Volume 17, Issue 10, Pages (October 2009)
Volume 13, Issue 2, Pages (February 2005)
Structural Diversity in Integrin/Talin Interactions
Volume 23, Issue 10, Pages (October 2015)
Structural Basis of EZH2 Recognition by EED
Volume 26, Issue 1, Pages (April 2007)
Volume 23, Issue 6, Pages (June 2015)
Volume 95, Issue 9, Pages (November 2008)
Structural Basis for Specific Recognition of Reelin by Its Receptors
Volume 19, Issue 1, Pages (January 2011)
Structural Insights into the pH-Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor  Zhenzheng Hu, Xiangyi Shi, Bowen.
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
A Self-Sequestered Calmodulin-like Ca2+ Sensor of Mitochondrial SCaMC Carrier and Its Implication to Ca2+-Dependent ATP-Mg/Pi Transport  Qin Yang, Sven.
Volume 21, Issue 2, Pages (February 2013)
Volume 14, Issue 4, Pages (April 2006)
Volume 52, Issue 3, Pages (November 2013)
Volume 24, Issue 10, Pages (October 2016)
Volume 12, Issue 1, Pages (July 2015)
Volume 20, Issue 1, Pages (January 2012)
Unmasking the Annexin I Interaction from the Structure of Apo-S100A11
Kalyan S. Chakrabarti, Jess Li, Ranabir Das, R. Andrew Byrd  Structure 
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 24, Issue 6, Pages (June 2016)
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Volume 18, Issue 9, Pages (September 2010)
Volume 19, Issue 8, Pages (August 2011)
Volume 27, Issue 7, Pages e5 (July 2019)
Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile  Magdalena Schacherl,
Volume 25, Issue 9, Pages e3 (September 2017)
Volume 44, Issue 6, Pages (December 2011)
A Plug Release Mechanism for Membrane Permeation by MLKL
Volume 14, Issue 12, Pages (December 2006)
Volume 17, Issue 2, Pages (February 2009)
Volume 21, Issue 1, Pages (October 2017)
Volume 19, Issue 10, Pages (October 2011)
Volume 21, Issue 12, Pages (December 2013)
Presentation transcript:

Volume 24, Issue 9, Pages 1441-1451 (September 2016) Structural Basis for the Recognition of Eukaryotic Elongation Factor 2 Kinase by Calmodulin  Kwangwoon Lee, Sébastien Alphonse, Andrea Piserchio, Clint D.J. Tavares, David H. Giles, Rebecca M. Wellmann, Kevin N. Dalby, Ranajeet Ghose  Structure  Volume 24, Issue 9, Pages 1441-1451 (September 2016) DOI: 10.1016/j.str.2016.06.015 Copyright © 2016 Elsevier Ltd Terms and Conditions

Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 1 Schematic Representation of the Domain Organization of eEF-2K The catalytic domain (CD, cyan), the basic allosteric pocket (yellow), and the critical auto-phosphorylation site T348 (green) on the regulatory loop (R loop) are shown; the C-terminal domain (CTD, red) contains multiple Sel1 like repeats (Mittl and Schneider-Brachert, 2007). The N-terminal CaM-binding domain (CBD, 74–100, blue) is encoded by the eEF-2KCBD peptide used here. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 2 Interaction between eEF-2KCBD with CaM in the Presence of Ca2+ (A) ITC trace representative of three repeats is shown. For the trace shown, KD = 137.2 ± 18.8 nM, ΔH = −16.6 kcal mol−1, ΔS = −22.5 cal mol−1 K−1. (B) Backbone amide chemical-shift perturbations induced on Ca2+-CaM upon formation of the 1:1 Ca2+-CaM·eEF-2KCBD complex. The locations of the eight helices (A, B, C, D on the N lobe and E, F, G, H on the C lobe) are shown. The blue bar represents residues that are unassigned in the Ca2+-CaM·eEF-2KCBD complex. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 3 Steady-State {1H}15N NOE for eEF-2KCBD in the Ca2+-CaM·eEF-2KCBD Complex The NOEs for the side-chain indole NH positions for W85 and W99 are shown in red. The backbone amide resonance of H80 was not detected in the spectra and is depicted by the green asterisk. The locations of the two prolines are shown in blue. Errors in the {1H}-15N NOEs were determined by propagation of the uncertainties in the intensities of corresponding peaks with and without 1H saturation. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 4 Structural Differences in CaM in the Presence of eEF-2KCBD under Low and High Ca2+ Conditions (A) Chemical-shift changes induced on apo-CaM in the presence of a 3-fold molar ratio of eEF-2KCBD. The black and green bars represent residues that are unassigned in the apo-CaM·eEF-2KCBD complex and apo-CaM alone, respectively. (B) Differences in chemical shifts between the apo-CaM·eEF-2KCBD and Ca2+-CaM·eEF-2KCBD complexes. The blue and green bars represent residues that are unassigned in the Ca2+-CaM·eEF-2KCBD complex and the apo-CaM·eEF-2KCBD complex, respectively. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 5 Solution Structure of the Ca2+-CaM·eEF-2KCBD Complex Twenty structures representing the final NMR ensemble have been overlaid using the C lobe and eEF-2KCBD (see Table 1). The N lobe (1–77) and C lobe of CaM (82–148) are colored green and blue, respectively, and the linker (78–81) is colored gray. eEF-2KCBD is colored dark orange. The N lobe of CaM, the linker, six residues on the N terminus, and seven residues on the C terminus of eEF-2KCBD are hidden to allow better visualization of the C-lobe eEF-2KCBD interactions in the lower panel. The side chains of the critical W85 are shown and colored light orange. The eEF-2KCBD residues are in italics and shown in orange. The Ca2+ ions occupying the N-lobe sites are not shown. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 6 Contacts between CaM and eEF-2KCBD (A) The CaM/eEF-2KCBD interface is stabilized by three sets of interactions: 1-5-8 hydrophobic docking (residues labeled and outlined using blue rectangles) of eEF-2KCBD onto the CaM C-lobe; interactions between P98 (outlined using a green rectangle) on eEF-2KCBD and the CaM N-lobe; two sets of electrostatic interactions (outlined by red circles) involving basic residues on eEF-2KCBD and acidic residues on CaM. (B and C) Detailed views of the 1-5-8 binding (B) and the interaction of P98 (C) with the C lobe and the N lobe of CaM, respectively, are shown. Locations of key residues on the CaM surface are colored (yellow for the C lobe and magenta for the N lobe) and labeled (in black). eEF-2KCBD residues are labeled in orange. The dashed lines indicate residues that point out the plane of the paper. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 7 Influence of the W85S Mutation on Full-Length eEF-2K (A) Fluorescence binding assays measuring interaction between wild-type full-length eEF-2K (blue), eEF-2KCBD (black), or the W85S mutant (red) and dansyl-CaM in the presence of Ca2+. The points (errors from duplicate measurements) represent the fraction of CaM in the bound state (calculated using Equation 5) at various concentrations of titrant and the solid curves represent the fits to Equation 6. (B–E) Results of the western blot analysis for eEF-2 phosphorylated on T56 after transfection of knockout MCF-10A (eEF-2K–/–) cells with vectors encoding wild-type eEF-2K or the W85S mutant along with appropriate controls (B). Also shown is the level of eEF-2 phosphorylated on T56 upon stimulation with 25 mM 2-DOG (30 min) (C), 400 μM H2O2 (1 hr) (D), 5 μM ionomycin (5 min), or starvation with Dulbecco’s PBS (6 hr) (E), along with the appropriate controls. Note that the blots shown in (B) have been cropped from those shown in (D) for untreated samples. Structure 2016 24, 1441-1451DOI: (10.1016/j.str.2016.06.015) Copyright © 2016 Elsevier Ltd Terms and Conditions