The Geant4 Hadrontherapy Advanced Example

Slides:



Advertisements
Similar presentations
Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
Advertisements

Maria Grazia Pia, INFN Genova Epistemic and systematic uncertainties in Monte Carlo simulation: Epistemic and systematic uncertainties in Monte Carlo simulation:
M. Glaser, G. Guatelli, B. Mascialino, M. Moll, M.G. Pia, F. Ravotti Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental.
Monte Carlo Based Implementation of an Energy Modulation System for Proton Therapy G.A.P. Cirrone Qualified Medical Physicist PhD Laboratori Nazionali.
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Parameterized Shower Simulation in Lelaps: a Comparison with Geant4 Daniel Birt, Amy Nicholson.
S. Guatelli, M.G. Pia – INFN Sezione di Genova Geant4-SPENVIS Workshop 3-7 October 2005 Leuven, Belgium Radioprotection.
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
S. Guatelli IEEE 2004 – NSS - Rome Dosimetry for Interplanetary Missions: the Geant4 REMSIM application S. Guatelli 1, P. Nieminen 2, M.G. Pia 1 IEEE NSS,
Geant4: What’s new, improved, or under study in hadronics J. Apostolakis.
Maria Grazia Pia Experimental validation of models in the pre-equilibrium and nuclear de-excitation phase G.A.P. Cirrone 1, G. Cuttone 1, F. Di Rosa 1,
A general purpose dosimetric system for brachytherapy
MONTE-CARLO TECHNIQUES APPLIED TO PROTON DOSIMETRY AND RADIATION SAFETY F. Guillaume, G. Rucka, J. Hérault, N. Iborra, P. Chauvel 1 XXXV European Cyclotron.
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
14 Overview of Geant4 Examples 2 nd Finnish Geant4 Workshop 6-7 June 2005 Dennis Wright (SLAC)
S. Guatelli, M.G Pia, INFN Genova S. Guatelli ( CERN, INFN Genova ) CERN, 13 November 2002 Users Workshop Where to put analysis in Geant4 Applications.
Susanna Guatelli Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 1 INFN Genova,
14 User Documents and Examples II SLAC Geant4 Tutorial 17 May 2007 Dennis Wright Geant4 V8.3.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Zaragoza, September 15 th, 2005 Geant4 and the underground physics community... (part.
Maria Grazia Pia, INFN Genova Geant4 Electromagnetic Validation (mostly electromagnetic, but also a bit of hadronic…) K. Amako, G.A.P. Cirrone, G. Cuttone,
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
S. Guatelli, M.G. Pia – INFN Sezione di Genova Monte Carlo April Radiation protection for interplanetary.
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Budker Inst. of Physics IHEP Protvino MEPHI Moscow Pittsburg University.
Low-energy EM group : validation of low energy EM models Geant Low Energy EM Physics working group January 2009 CERN.
SOI detector Geant4-based studies to characterise the tissue-equivalence of SOI and diamond microdosimeteric detectors, under development at CMRP S. Dowdell,
Summary of Work Zhang Qiwei INFN - CIAE. Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases.
Validation and TestEm series Michel Maire for the Standard EM group LAPP (Annecy) July 2006.
Precision Analysis of Electron Energy Deposition in Detectors Simulated by Geant4 M. Bati č, S. Granato, G. Hoff, M.G. Pia, G. Weidenspointner 2012 NSS-MIC.
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
S. Guatelli, CPS Innovations, Knoxville, 13 th -21 st January Brachytherapy exercise.
Maria Grazia Pia Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation Simulation for LHC Radiation.
Pedro Arce Introducción a GEANT4 1 GAMOS tutorial Plug-in’s Exercises Pedro Arce Dubois CIEMAT
A General Purpose Brachytherapy Software Simulation + Analysis (isodose calculation) 2/10/2002 Geant4 Workshop CERN Susanna Guatelli Univ. and INFN Genova.
S. Guatelli, M.G Pia, INFN Genova G. Cosmo, S. Guatelli, M.G Pia Salamanca, July 2002
1 Gean4 medical_linac advanced example: A Geant4 accelerator model Dr. S. Guatelli Geant4 Collaboration member, Lecturer, Centre of Medical Radiation Physics,
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Hadronic Physics II Geant4 Users’ Tutorial CERN February 2010 Gunter Folger.
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Precision analysis of Geant4 condensed transport effects on energy deposition in detectors M. Batič 1,2, G. Hoff 1,3, M. G. Pia 1 1 INFN Sezione di Genova,
Geant4 Training 2006 Short Course Katsuya Amako (KEK) Gabriele Cosmo (CERN) Susanna Guatelli (INFN Genova) Aatos Heikkinen (Helsinki Institute of Physics)
ESTRO, Geneva 2003 The importance of nuclear interactions for dose calculations in proton therapy M.Soukup 1, M.Fippel 2, F. Nuesslin 2 1 Department of.
Validation of the bremssrahlung process IV Workshop on Geant4 physics validation Susanna Guatelli, Luciano Pandola, Maria Grazia Pia, Valentina Zampichelli.
Geant4 Training 2004 Short Course Katsuya Amako (KEK) Gabriele Cosmo (CERN) Giuseppe Daquino (CERN) Susanna Guatelli (INFN Genova) Aatos Heikkinen (Helsinki.
Implementation of a New Monte Carlo Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the related Dose Distributions.
1 Exercises 0 Go inside the “hadrontherapy” directory: cd hadrontherapy Copy the Hadrontherapy example to your home folder: cp –r $G4INSTALL/examples/advanced/hadrontherapy.
Workshop Geant4 Presentation September 14 th, 2007 FASTRAD V3.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Simulation Project Structure and tasks
Geant4 REMSIM application
Introduction Goal: Can we reconstruct the energy depositions of the proton in the brain if we are able to reconstruct the photons produced during this.
F. Foppiano, S. Guatelli, B. Mascialino, M. G. Pia, M. Piergentili
Radioprotection for interplanetary manned missions
G.A.P.Cirrone, S.E.Mazzaglia - INFN/LNS, Italy
Hadronic Physics in Geant4
Geant4 physics validation: Bragg Peak
Short Course Siena, 5-6 October 2006
The Hadrontherapy Geant4 advanced example
An update on the Goodness of Fit Statistical Toolkit
Short Course IEEE NSS/MIC 2003 Katsuya Amako (KEK) Makoto Asai (SLAC)
GAMOS tutorial Plug-in’s Exercises
Geant4 course - exercices
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
Presentation transcript:

The Geant4 Hadrontherapy Advanced Example http://cern.ch/geant4 Developed by: G.A.P. Cirrone1, F. Di Rosa1, S. Guatelli2, M.G. Pia2, G. Russo1 1INFN Laboratori Nazionali del Sud, Italy 2INFN Genova, Italy

Contents User requirements Design of the physics component Implementation Geometry component Primary particle component Physics component Calculation of the energy deposit Analysis component How to execute the Hadrontherapy advanced example

User requirements

Results of the simulation User requirements The user shall be able to: Model a hadrontherapy beam line in terms of Geometry components Proton beam Model a phantom as a water box Model the electromagnetic and hadronic interactions Choose alternative approaches interactively to model Electromagnetic interactions Hadronic interactions Calculate the energy deposit in the phantom derived from: Both primary (the incident proton beam) and secondary particles Store the results of the simulation 3D energy deposit in the phantom Bragg peak Etc. in histograms and n-tuples Visualise the experimental set-up and the tracks of the particles Experimental set-up Physics Results of the simulation Visualisation

Design of the physics component Particles Messenger Alternative approaches to model p, n, pions hadronic interactions Modularised physics component The user can configure the simulation with different physics options transparently Alternative approaches to model protons, ions, e-, photons, e+ EM interactions

Implementation

Implementation Hadrontherapy example Classes header files in include/*.hh, source code in src/ *.cc main in Hadrontherapy.cc macro: defaultMacro.mac Classes HadrontherapyAnalysisManager HadrontherapyDetectorConstruction HadrontherapyDetectorMessenger HadrontherapyMaterial HadrontherapyPrimaryGeneratorAction HadrontherapyPhysicsList HadrontherapyPhysicsListMessenger ……

Detector Component The proton beam line is modelled in the experimental set-up in terms of: Geometrical components Materials Geant4 simulation

Primary particle component Mean value Sigma Energy 63.5 MeV 400. keV Position (x0, 0, 0) (0., 1., 1.) mm Direction (1., 0., 0.) (0., 0.0001, 0.0001) The primary particles are protons Origin of the primary particles X axis

Physics component Hadronic Electromagnetic Parameterized (à la GHEISHA) Nuclear Deexcitation Default evaporation GEM evaporation Fermi break-up Pre-equilibrium Precompound model Bertini model Intra-nuclear cascade Bertini cascade Binary cascade Elastic scattering Parameterized Bertini For protons and ions Standard Low Energy – ICRU 49 Low Energy – Ziegler 1977 Low Energy – Ziegler 1985 Low Energy – Ziegler 2000 For electrons and photons Low Energy – Livermore Low Energy – Penelope For positrons Low Energy - Penelope

Phantom The phantom is set in front the beam line Phantom: water box ( size: 40 mm ) Water box X axis The phantom is subdivided in 200 voxels along x, y, z axis The energy deposit is calculated in the voxels The result of the simulation is: 3D energy deposit in the phantom Energy deposit with respect to the depth in the phantom along the x axis

Analysis component AIDA 3.2.1 and PI 1.3.8 The simulation produces a .hbk file at the end hadrontherapy.hbk The Bragg peak is saved in a 1D histogram (ID = 10) The 3D energy deposit in the phantom is stored in a ntuple 3 109 events

Control, monitor the simulation

Messengers Interactive commands are defined to select: to change: Physics processes Physics models To model electromagnetic and hadronic interactions of particles to change: Geometrical parameters of the proton beam line Energy, position and direction of the primary particles

How to select the physics models Example of macro: /control/verbose 1 …….. /physics/addPhysics photon-epdl /physics/addPhysics electron-eedl /physics/addPhysics positron-standard /physics/addPhysics ion-LowE /physics/addPhysics muon-standard /physics/addPhysics decay /physics/addPhysics proton-precompound /run/initialize /run/beamOn 100

How to run Define necessary environment variables source … How to compile and link gmake How to run $G4WORKDIR/bin/Linux/Hadrontherapy (defaultmacro.mac is executed by default) Result of the simulation: hadrontherapy.hbk

Comments on the Geant4 physics Wide set of physics processes and models offered by Geant4 The Hadrontherapy advanced example provides examples of physics lists How to best choose the most appropriate model for a particular experimental set-up? The user has to select the physics models Electromagnetic and hadronic components The user has to validate his/her Geant4 physics component with respect to reference data A comprehensive assessment of Geant4 electromagnetic physics with respect to established reference data is documented in: K. Amako et al., Comparison of Geant4 electromagnetic physics models against the NIST reference data IEEE Trans. Nucl. Sci., Vol. 52, Issue 4, Aug. 2005, pp. 910-918