Peter Chien, Robert A. Grant, Robert T. Sauer, Tania A. Baker 

Slides:



Advertisements
Similar presentations
Volume 18, Issue 2, Pages (February 2010)
Advertisements

Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 25, Issue 4, Pages e3 (April 2017)
Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Volume 20, Issue 11, Pages (November 2012)
Volume 25, Issue 4, Pages e3 (April 2017)
Hierarchical Binding of Cofactors to the AAA ATPase p97
Structural Basis for Vertebrate Filamin Dimerization
The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface  Sandra Markovic, Raimund Dutzler  Structure 
Daniel N. Bolon, Robert A. Grant, Tania A. Baker, Robert T. Sauer 
Andreas Martin, Tania A. Baker, Robert T. Sauer  Molecular Cell 
Peter Chien, Robert A. Grant, Robert T. Sauer, Tania A. Baker 
Volume 21, Issue 9, Pages (September 2013)
Complex Energy Landscape of a Giant Repeat Protein
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 16, Issue 10, Pages (October 2008)
Barbie K. Ganser-Pornillos, Anchi Cheng, Mark Yeager  Cell 
Volume 23, Issue 7, Pages (July 2015)
Volume 22, Issue 1, Pages (January 2014)
Structure of the Angiopoietin-2 Receptor Binding Domain and Identification of Surfaces Involved in Tie2 Recognition  William A. Barton, Dorothea Tzvetkova,
Volume 18, Issue 2, Pages (February 2010)
Volume 20, Issue 5, Pages (May 2012)
Volume 19, Issue 5, Pages (May 2011)
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 16, Issue 10, Pages (October 2008)
The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein  Craig S. Robb, Melissa Robb, Francis E.
A Conformational Switch in the CRIB-PDZ Module of Par-6
Structural Basis for Vertebrate Filamin Dimerization
Volume 18, Issue 6, Pages (June 2010)
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Structure of the Catalytic Region of DNA Ligase IV in Complex with an Artemis Fragment Sheds Light on Double-Strand Break Repair  Takashi Ochi, Xiaolong.
Volume 24, Issue 10, Pages (October 2016)
Volume 143, Issue 2, Pages (October 2010)
Structural Basis of EZH2 Recognition by EED
Volume 23, Issue 4, Pages (April 2015)
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
Volume 21, Issue 12, Pages (December 2013)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Structural Basis of Caspase-7 Inhibition by XIAP
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Tianjun Zhou, Liguang Sun, John Humphreys, Elizabeth J. Goldsmith 
Diverse Pore Loops of the AAA+ ClpX Machine Mediate Unassisted and Adaptor- Dependent Recognition of ssrA-Tagged Substrates  Andreas Martin, Tania A. Baker,
A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity  Nadine L. Samara, Alison E. Ringel, Cynthia Wolberger 
Volume 14, Issue 4, Pages (April 2006)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 139, Issue 4, Pages (November 2009)
Volume 52, Issue 3, Pages (November 2013)
Volume 17, Issue 8, Pages (August 2009)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 127, Issue 2, Pages (October 2006)
Volume 11, Issue 3, Pages (March 2003)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Structural Insight into BLM Recognition by TopBP1
A YidC-like Protein in the Archaeal Plasma Membrane
Structural Role of the Vps4-Vta1 Interface in ESCRT-III Recycling
Volume 19, Issue 8, Pages (August 2011)
Volume 13, Issue 5, Pages (May 2005)
Volume 14, Issue 3, Pages (March 2006)
Volume 13, Issue 5, Pages (May 2005)
Brett K. Kaiser, Matthew C. Clifton, Betty W. Shen, Barry L. Stoddard 
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Volume 13, Issue 3, Pages (February 2004)
Structural Switch of the γ Subunit in an Archaeal aIF2αγ Heterodimer
Characterization of a Specificity Factor for an AAA+ ATPase
Volume 21, Issue 6, Pages (June 2013)
Volume 20, Issue 5, Pages (May 2012)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
The Structure of the MAP2K MEK6 Reveals an Autoinhibitory Dimer
Volume 15, Issue 5, Pages (May 2007)
Presentation transcript:

Structure and Substrate Specificity of an SspB Ortholog: Design Implications for AAA+ Adaptors  Peter Chien, Robert A. Grant, Robert T. Sauer, Tania A. Baker  Structure  Volume 15, Issue 10, Pages 1296-1305 (October 2007) DOI: 10.1016/j.str.2007.08.008 Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 1 SspBα Preferentially Binds the α-Proteobacterial ssrA Peptide (A) SspBα binds the E. coli ssrA peptide weakly (KD = 42 ± 5 μM) and the C. crescentus ssrA peptide tightly (KD = 0.24 ± 0.02 μM). The lines are nonlinear least-squares fits of the data to a 1:1 equilibrium binding model; the x axis represents monomer subunit concentration. (B) Scanning-array mutagenesis of the C. crescentus ssrA peptide highlights the importance of the NDN motif. Rows represent residues/positions targeted for mutagenesis and columns represent substitutions. Asterisks denote the wild-type peptide. Darker spots reflect tighter SspBα binding. (C) Alignment of ssrA peptide tags from representative α-proteobacteria and the E. coli γ-proteobacterium. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 2 Effects of Mutations in the E. coli ssrA Tag on SspBα Binding (A) Binding of SspBα to an array of E. coli ssrA peptides containing single-residue substitutions. The E5N mutation enhances SspBα binding. (B) SspBα does not bind GFP bearing the wild-type E. coli ssrA tag (top panel) but does bind GFP with the E5N mutant tag (bottom panel) in gel-filtration experiments monitored by GFP absorbance. (C) Tighter binding results in more efficient turnover of GFP with the E5N mutant tag. Reactions contained 0.1 μM C. crescentus ClpX, 0.2 μM C. crescentus ClpP, and 0.25 μM tagged GFP. When present, the SspBα concentration was 1 μM. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 3 Structure of SspBα Bound to Its Cognate ssrA Peptide, PDB ID Code 2QAS Views parallel (top) and perpendicular (bottom) to the dimer two-fold axis of SspBα. The two ssrA peptides are oriented in an antiparallel fashion. In the top view, arrows point toward the C terminus of the ssrA peptide; in the bottom orientation, the plus sign denotes an arrow pointing out of page and the minus sign denotes an arrow pointing into the page. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 4 Conservation among the SspB Family Adaptors (A) Alignment of E. coli SspB, H. influenzae SspB, and C. crescentus SspBα displaying conserved secondary structure elements. Alignment was performed using Jalview (Clamp et al., 2004). Residues responsible for dimer interface (red), ssrA peptide binding (green), and binding to ClpX (XB motif; blue) are highlighted in the alignment. (B) Cartoon schematic of important features mapped onto a model of the SspBα structure using the same color coding. (C) Conservation of residues within α-proteobacterial SspBαs (red). (D) Conservation of residues between all SspBαs and γ- and β-proteobacterial SspBs (orange) highlights the peptide-binding groove as being most preserved. Darker color represents higher conservation in these representations. Color coding of conservation was performed using the ProtSkin tool (Deprez et al., 2005). Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 5 Structural Comparison of SspBα to SspB Orthologs (A) Structural alignment of the β sandwich peptide-binding pocket of C. Crescentus SspBα (orange) and E. coli SspB (PDB ID code 1OX9; black). (B) The C. crescentus SspBα dimer interface is more twisted and extended than the interface in H. influenzae SspB (PDB ID code 1OU8) or E. coli SspB (not shown). (C) The two peptides in the E. coli SspB/ssrA complex (PDB ID code 1OX9) are parallel, unlike the SspBα/ssrA complex (see Figure 3). Arrows point toward the C terminus of the ssrA peptide. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 6 Peptide-Binding Contacts (A) Stereoview of model and electron density (contoured at 1σ) of interactions of SspBα (orange electron density; green labels) with the NDN motif of the ssrA peptide (blue electron density; black labels). Key hydrogen bonds are indicated by dashed lines. (B) Schematic representation of SspBα/ssrA interactions. Circles denote residues 1–8 of the C. crescentus ssrA peptide (purple bonds). SspBα residues important for forming the binding pocket (orange bonds) are shown with the main-chain atoms highlighted in red. Dashed green lines represent hydrogen bonds between SspBα and the ssrA peptide. The image was generated using LIGPLOT (Wallace et al., 1995) and Adobe Illustrator (Adobe). Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 7 SspBα Does Not Bind N-RseA (A) Incubation of an N-RseA peptide (residues 77–108) with SspBα (10 μM or 40 μM) showed no binding assayed by fluorescence anisotropy. Binding was observed upon addition of 6 μM E. coli SspB to the same reaction. (B) Modeling of the N-RseA peptide into the peptide-binding groove of SspBα reveals steric clashes (highlighted in red) between the peptide and the protein surface. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 8 Gln74 in SspBα Acts as a Gatekeeper (A and B) The Q74A SspBα mutation weakens binding of SspBα to the C. crescentus ssrA peptide but improves binding to the E. coli ssrA peptide. Solid lines are nonlinear least-squares fits of the data to a 1:1 equilibrium binding isotherm; dashed lines show the binding curves for wild-type SspBα for comparison. (C) The Q74A SspBα mutant is less active than wild-type SspBα in enhancing C. crescentus ClpXP degradation of GFP bearing the C. crescentus ssrA tag. (D) The Q74A SspBα mutant is more active than wild-type in enhancing E. coli ClpXP degradation of GFP tagged with E. coli ssrA-DAS, a version of the ssrA tag that requires adaptor-mediated tethering for efficient degradation. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions

Figure 9 SspBα Binding to ssrA Does Not Occlude ClpX Recognition Elements (A) Left: surface representation of C. crescentus SspBα bound to its ssrA peptide. Right: surface representation of H. influenzae SspB bound to its ssrA peptide. In both representations, ClpX recognition elements in the ssrA tags are denoted. C-terminal residues of the ECssrA tag (LAA) and the CCssrA tag (EFAVAA) are not ordered in the crystal structure and were modeled in an extended conformation. (B) Left: both SspB and SspBα enhance degradation of their cognate substrates by full-length ClpX and ClpP. Reactions contain of 0.1 μM E. coli ClpX, 0.3 μM ClpP, 1 μM GFP substrate, and 2 μM SspB or SspBα. Right: a ClpX variant lacking the N-terminal adaptor docking region plus ClpP degrades both C. crescentus and E. coli ssrA-tagged proteins, but SspB binding occludes the C-terminal AA ClpX recognition motif in the E. coli ssrA tag, inhibiting degradation of ssrA-tagged proteins. SspBα binding to the C. crescentus ssrA tag has a weaker inhibitory effect. Reactions contain 0.15 μM E. coli ClpX-ΔN, 0.3 μM ClpP, 2 μM GFP substrate, and 20 μM SspB or SspBα. Structure 2007 15, 1296-1305DOI: (10.1016/j.str.2007.08.008) Copyright © 2007 Elsevier Ltd Terms and Conditions