Yet another Example T This happens to be a rank-7 matrix

Slides:



Advertisements
Similar presentations
Special Topics in Computer Science The Art of Information Retrieval Chapter 5: Query Operations Alexander Gelbukh
Advertisements

Chapter 5: Query Operations Hassan Bashiri April
Chapter 5: Introduction to Information Retrieval
Text Databases Text Types
Latent Semantic Analysis
Introduction to Information Retrieval
Distance and Similarity Measures
Comparison of information retrieval techniques: Latent semantic indexing (LSI) and Concept indexing (CI) Jasminka Dobša Faculty of organization and informatics,
What is missing? Reasons that ideal effectiveness hard to achieve: 1. Users’ inability to describe queries precisely. 2. Document representation loses.
Hinrich Schütze and Christina Lioma
Query Operations: Automatic Local Analysis. Introduction Difficulty of formulating user queries –Insufficient knowledge of the collection –Insufficient.
9/7 Agenda  Project 1 discussion  Correlation Analysis  PCA (LSI)
Database Management Systems, R. Ramakrishnan1 Computing Relevance, Similarity: The Vector Space Model Chapter 27, Part B Based on Larson and Hearst’s slides.
Chapter 5: Query Operations Baeza-Yates, 1999 Modern Information Retrieval.
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) IR Queries.
CSM06 Information Retrieval Lecture 3: Text IR part 2 Dr Andrew Salway
Improving Vector Space Ranking
Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues
1 Query Language Baeza-Yates and Navarro Modern Information Retrieval, 1999 Chapter 4.
TFIDF-space  An obvious way to combine TF-IDF: the coordinate of document in axis is given by  General form of consists of three parts: Local weight.
Lecture 21 SVD and Latent Semantic Indexing and Dimensional Reduction
1/ 30. Problems for classical IR models Introduction & Background(LSI,SVD,..etc) Example Standard query method Analysis standard query method Seeking.
The Terms that You Have to Know! Basis, Linear independent, Orthogonal Column space, Row space, Rank Linear combination Linear transformation Inner product.
Evaluating the Performance of IR Sytems
1 CS 430 / INFO 430 Information Retrieval Lecture 3 Vector Methods 1.
Multimedia Databases Text II. Outline Spatial Databases Temporal Databases Spatio-temporal Databases Multimedia Databases Text databases Image and video.
Relevance Feedback Main Idea:
1 CS 430 / INFO 430 Information Retrieval Lecture 9 Latent Semantic Indexing.
Automatically obtain a description for a larger cluster of relevant documents Identify terms related to query terms  Synonyms, stemming variations, terms.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Documents as vectors Each doc j can be viewed as a vector of tf.idf values, one component for each term So we have a vector space terms are axes docs live.
Homework Define a loss function that compares two matrices (say mean square error) b = svd(bellcore) b2 = b$u[,1:2] %*% diag(b$d[1:2]) %*% t(b$v[,1:2])
Chapter 2 Dimensionality Reduction. Linear Methods
1 Vector Space Model Rong Jin. 2 Basic Issues in A Retrieval Model How to represent text objects What similarity function should be used? How to refine.
Query Operations J. H. Wang Mar. 26, The Retrieval Process User Interface Text Operations Query Operations Indexing Searching Ranking Index Text.
Query Operations. Query Models n IR Systems usually adopt index terms to process queries; n Index term: u A keyword or a group of selected words; u Any.
Latent Semantic Analysis Hongning Wang Recap: vector space model Represent both doc and query by concept vectors – Each concept defines one dimension.
CpSc 881: Information Retrieval. 2 Recall: Term-document matrix This matrix is the basis for computing the similarity between documents and queries. Today:
Chapter 6: Information Retrieval and Web Search
1 Computing Relevance, Similarity: The Vector Space Model.
Introduction to Digital Libraries hussein suleman uct cs honours 2003.
CPSC 404 Laks V.S. Lakshmanan1 Computing Relevance, Similarity: The Vector Space Model Chapter 27, Part B Based on Larson and Hearst’s slides at UC-Berkeley.
SINGULAR VALUE DECOMPOSITION (SVD)
Elementary Linear Algebra Anton & Rorres, 9th Edition
1 Latent Concepts and the Number Orthogonal Factors in Latent Semantic Analysis Georges Dupret
Web Search and Text Mining Lecture 5. Outline Review of VSM More on LSI through SVD Term relatedness Probabilistic LSI.
Natural Language Processing Topics in Information Retrieval August, 2002.
 Matrix Operations  Inverse of a Matrix  Characteristics of Invertible Matrices …
Distance and Similarity Measures
Linear Algebra review (optional)
Designing Cross-Language Information Retrieval System using various Techniques of Query Expansion and Indexing for Improved Performance  Hello everyone,
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
IST 516 Fall 2011 Dongwon Lee, Ph.D.
Multimedia Information Retrieval
15-826: Multimedia Databases and Data Mining
Inverted Indicies (with Compression & LSI)
15-826: Multimedia Databases and Data Mining
Lecture 21 SVD and Latent Semantic Indexing and Dimensional Reduction
SVD: Physical Interpretation and Applications
Representation of documents and queries
Design open relay based DNS blacklist system
Text Categorization Assigning documents to a fixed set of categories
Relevance Feedback & Query Expansion
CS 430: Information Discovery
Elementary Linear Algebra Anton & Rorres, 9th Edition
Query Operations Berlin Chen 2003 Reference:
Retrieval Utilities Relevance feedback Clustering
Linear Algebra review (optional)
Latent Semantic Indexing
Latent Semantic Analysis
Presentation transcript:

Yet another Example T This happens to be a rank-7 matrix U (9x7) =     0.3996   -0.1037    0.5606   -0.3717   -0.3919   -0.3482    0.1029     0.4180   -0.0641    0.4878    0.1566    0.5771    0.1981   -0.1094     0.3464   -0.4422   -0.3997   -0.5142    0.2787    0.0102   -0.2857     0.1888    0.4615    0.0049   -0.0279   -0.2087    0.4193   -0.6629     0.3602    0.3776   -0.0914    0.1596   -0.2045   -0.3701   -0.1023     0.4075    0.3622   -0.3657   -0.2684   -0.0174    0.2711    0.5676     0.2750    0.1667   -0.1303    0.4376    0.3844   -0.3066    0.1230     0.2259   -0.3096   -0.3579    0.3127   -0.2406   -0.3122   -0.2611     0.2958   -0.4232    0.0277    0.4305   -0.3800    0.5114    0.2010 S (7x7) =     3.9901         0         0         0         0         0         0          0    2.2813         0         0         0         0         0          0         0    1.6705         0         0         0         0          0         0         0    1.3522         0         0         0          0         0         0         0    1.1818         0         0          0         0         0         0         0    0.6623         0          0         0         0         0         0         0    0.6487 V (7x8) =     0.2917   -0.2674    0.3883   -0.5393    0.3926   -0.2112   -0.4505     0.3399    0.4811    0.0649   -0.3760   -0.6959   -0.0421   -0.1462     0.1889   -0.0351   -0.4582   -0.5788    0.2211    0.4247    0.4346    -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000     0.6838   -0.1913   -0.1609    0.2535    0.0050   -0.5229    0.3636     0.4134    0.5716   -0.0566    0.3383    0.4493    0.3198   -0.2839     0.2176   -0.5151   -0.4369    0.1694   -0.2893    0.3161   -0.5330     0.2791   -0.2591    0.6442    0.1593   -0.1648    0.5455    0.2998 term  ch2 ch3  ch4  ch5  ch6  ch7  ch8  ch9 controllability  1  1 0  observability  realization  feedback  0     controller  1    observer  1     transfer function 0    polynomial  matrices  T This happens to be a rank-7 matrix -so only 7 dimensions required Singular values = Sqrt of Eigen values of AAT

Formally, this will be the rank-k (2) matrix that is closest to M in the matrix norm sense U (9x7) =     0.3996   -0.1037    0.5606   -0.3717   -0.3919   -0.3482    0.1029     0.4180   -0.0641    0.4878    0.1566    0.5771    0.1981   -0.1094     0.3464   -0.4422   -0.3997   -0.5142    0.2787    0.0102   -0.2857     0.1888    0.4615    0.0049   -0.0279   -0.2087    0.4193   -0.6629     0.3602    0.3776   -0.0914    0.1596   -0.2045   -0.3701   -0.1023     0.4075    0.3622   -0.3657   -0.2684   -0.0174    0.2711    0.5676     0.2750    0.1667   -0.1303    0.4376    0.3844   -0.3066    0.1230     0.2259   -0.3096   -0.3579    0.3127   -0.2406   -0.3122   -0.2611     0.2958   -0.4232    0.0277    0.4305   -0.3800    0.5114    0.2010 S (7x7) =     3.9901         0         0         0         0         0         0          0    2.2813         0         0         0         0         0          0         0    1.6705         0         0         0         0          0         0         0    1.3522         0         0         0          0         0         0         0    1.1818         0         0          0         0         0         0         0    0.6623         0          0         0         0         0         0         0    0.6487 V (7x8) =     0.2917   -0.2674    0.3883   -0.5393    0.3926   -0.2112   -0.4505     0.3399    0.4811    0.0649   -0.3760   -0.6959   -0.0421   -0.1462     0.1889   -0.0351   -0.4582   -0.5788    0.2211    0.4247    0.4346    -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000     0.6838   -0.1913   -0.1609    0.2535    0.0050   -0.5229    0.3636     0.4134    0.5716   -0.0566    0.3383    0.4493    0.3198   -0.2839     0.2176   -0.5151   -0.4369    0.1694   -0.2893    0.3161   -0.5330     0.2791   -0.2591    0.6442    0.1593   -0.1648    0.5455    0.2998 U2 (9x2) =     0.3996   -0.1037     0.4180   -0.0641     0.3464   -0.4422     0.1888    0.4615     0.3602    0.3776     0.4075    0.3622     0.2750    0.1667     0.2259   -0.3096     0.2958   -0.4232 S2 (2x2) =     3.9901         0          0    2.2813 V2 (8x2) =     0.2917   -0.2674     0.3399    0.4811     0.1889   -0.0351    -0.0000   -0.0000     0.6838   -0.1913     0.4134    0.5716     0.2176   -0.5151     0.2791   -0.2591 T U2*S2*V2 will be a 9x8 matrix That approximates original matrix

Coordinate transformation inherent in LSI Doc rep T-D = T-F*F-F*(D-F)T Mapping of keywords into LSI space is given by T-F*F-F Mapping of a doc d=[w1….wk] into LSI space is given by d’*T-F*(F-F)-1 For k=2, the mapping is: The base-keywords of The doc are first mapped To LSI keywords and Then differentially weighted By S-1 LSx LSy controllability observability realization feedback controller observer Transfer function polynomial matrices 1.5944439 -0.2365708 1.6678618 -0.14623132 1.3821706 -1.0087909 0.7533309 1.05282 1.4372339 0.86141896 1.6259657 0.82628685 1.0972775 0.38029274 0.90136355 -0.7062905 1.1802715 -0.96544623 LSIy ch3 controller LSIx controllability

Querying T-F To query for feedback controller, the query vector would be q = [0     0     0     1     1     0     0     0     0]'  (' indicates transpose), since feedback and controller are the 4-th and 5-th terms in the index, and no other terms are selected.  Let q be the query vector.  Then the document-space vector corresponding to q is given by: q'*TF(2)*inv(FF(2) ) = Dq For the feedback controller query vector, the result is: Dq = 0.1376    0.3678 To find the best document match, we compare the Dq vector against all the document vectors in the 2-dimensional V2 space.  The document vector that is nearest in direction to Dq is the best match.    The cosine values for the eight document vectors and the query vector are:    -0.3747    0.9671    0.1735   -0.9413    0.0851    0.9642   -0.7265   -0.3805      F-F D-F Centroid of the terms In the query (with scaling) -0.37    0.967    0.173    -0.94    0.08     0.96   -0.72   -0.38

Variations in the examples  DB-Regression example Started with D-T matrix Used the term axes as T-F; and the doc rep as D-F*F-F Q is converted into q’*T-F Chapter/Medline etc examples Started with T-D matrix Used term axes as T-F*FF and doc rep as D-F Q is converted to q’*T-F*FF-1 We will stick to this convention

Query Expansion Add terms that are closely related to the query terms to improve precision and recall. Two variants: Local  only analyze the closeness among the set of documents that are returned Global  Consider all the documents in the corpus a priori How to decide closely related terms? THESAURI!! -- Hand-coded thesauri (Roget and his brothers) -- Automatically generated thesauri --Correlation based (association, nearness) --Similarity based (terms as vectors in doc space)

Correlation/Co-occurrence analysis Terms that are related to terms in the original query may be added to the query. Two terms are related if they have high co-occurrence in documents. Let n be the number of documents; n1 and n2 be # documents containing terms t1 and t2, m be the # documents having both t1 and t2 If t1 and t2 are independent If t1 and t2 are correlated >> if Inversely correlated Measure degree of correlation

Association Clusters Let Mij be the term-document matrix For the full corpus (Global) For the docs in the set of initial results (local) (also sometimes, stems are used instead of terms) Correlation matrix C = MMT (term-doc Xdoc-term = term-term) Un-normalized Association Matrix Normalized Association Matrix Nth-Association Cluster for a term tu is the set of terms tv such that Suv are the n largest values among Su1, Su2,….Suk

Example 11 4 6 4 34 11 6 11 26 Correlation Matrix d1d2d3d4d5d6d7 11 4 6 4 34 11 6 11 26 Correlation Matrix d1d2d3d4d5d6d7 K1 2 1 0 2 1 1 0 K2 0 0 1 0 2 2 5 K3 1 0 3 0 4 0 0 Normalized Correlation Matrix 1.0 0.097 0.193 0.097 1.0 0.224 0.193 0.224 1.0 1th Assoc Cluster for K2 is K3

Scalar clusters Even if terms u and v have low correlations, they may be transitively correlated (e.g. a term w has high correlation with u and v). Consider the normalized association matrix S The “association vector” of term u Au is (Su1,Su2…Suk) To measure neighborhood-induced correlation between terms: Take the cosine-theta between the association vectors of terms u and v Nth-scalar Cluster for a term tu is the set of terms tv such that Suv are the n largest values among Su1, Su2,….Suk

Example AK1 1th Scalar Cluster for K2 is still K3 1.0 0.226 0.383 Normalized Correlation Matrix AK1 USER(43): (neighborhood normatrix) 0: (COSINE-METRIC (1.0 0.09756097 0.19354838) (1.0 0.09756097 0.19354838)) 0: returned 1.0 0: (COSINE-METRIC (1.0 0.09756097 0.19354838) (0.09756097 1.0 0.2244898)) 0: returned 0.22647195 0: (COSINE-METRIC (1.0 0.09756097 0.19354838) (0.19354838 0.2244898 1.0)) 0: returned 0.38323623 0: (COSINE-METRIC (0.09756097 1.0 0.2244898) (1.0 0.09756097 0.19354838)) 0: (COSINE-METRIC (0.09756097 1.0 0.2244898) (0.09756097 1.0 0.2244898)) 0: (COSINE-METRIC (0.09756097 1.0 0.2244898) (0.19354838 0.2244898 1.0)) 0: returned 0.43570948 0: (COSINE-METRIC (0.19354838 0.2244898 1.0) (1.0 0.09756097 0.19354838)) 0: (COSINE-METRIC (0.19354838 0.2244898 1.0) (0.09756097 1.0 0.2244898)) 0: (COSINE-METRIC (0.19354838 0.2244898 1.0) (0.19354838 0.2244898 1.0)) Scalar (neighborhood) Cluster Matrix 1.0 0.226 0.383 0.226 1.0 0.435 0.383 0.435 1.0 1th Scalar Cluster for K2 is still K3

Querying To query for database index, the query vector would be since database and index are the 1st and 3rd terms in the index, and no other terms are selected.  Let q be the query vector.  Then the document-space vector corresponding to q is given by: q'*U2*inv(S2) = Dq To find the best document match, we compare the Dq vector against all the document vectors in the 2-dimensional doc space.  The document vector that is nearest in direction to Dq is the best match.    The cosine values for the eight document vectors and the query vector are:    -0.3747    0.9671    0.1735   -0.9413    0.0851    0.9642   -0.7265   -0.3805      Centroid of the terms In the query (with scaling)