CS 3013: DS & Algorithms Shortest Paths.

Slides:



Advertisements
Similar presentations
Advanced Algorithm Design and Analysis Jiaheng Lu Renmin University of China
Advertisements

Single Source Shortest Paths
October 31, Algorithms and Data Structures Lecture XIII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
November 14, Algorithms and Data Structures Lecture XIII Simonas Šaltenis Aalborg University
CS138A Single Source Shortest Paths Peter Schröder.
Introduction to Algorithms 6.046J/18.401J/SMA5503
CS420 lecture twelve Shortest Paths wim bohm cs csu.
Lecture 20: Shortest Paths Shang-Hua Teng. Weighted Directed Graphs Weight on edges for distance
Lecture 19: Shortest Paths Shang-Hua Teng. Weighted Directed Graphs Weight on edges for distance
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
Shortest Path Problems
Shortest Paths Definitions Single Source Algorithms –Bellman Ford –DAG shortest path algorithm –Dijkstra All Pairs Algorithms –Using Single Source Algorithms.
1 8-ShortestPaths Shortest Paths in a Graph Fundamental Algorithms.
Data Structures, Spring 2004 © L. Joskowicz 1 Data Structures – LECTURE 15 Shortest paths algorithms Properties of shortest paths Bellman-Ford algorithm.
BellmanFord. BellmanFord(G,w,s) 1 InitializeSingleSource(G,s) 2 for i 1 to |V[G]| do for each (u,v) E[G] 4 do Relax(u,v,w) 5 for each edge (u,v)
Graph Algorithms: Shortest Path We are given a weighted, directed graph G = (V, E), with weight function w: E R mapping.
Shortest Paths Definitions Single Source Algorithms
CSE 780 Algorithms Advanced Algorithms SSSP Dijkstra’s algorithm SSSP in DAGs.
1 Graph Algorithms Single source shortest paths problem Dana Shapira.
Data Structures, Spring 2006 © L. Joskowicz 1 Data Structures – LECTURE 15 Shortest paths algorithms Properties of shortest paths Bellman-Ford algorithm.
SINGLE-SOURCE SHORTEST PATHS. Shortest Path Problems Directed weighted graph. Path length is sum of weights of edges on path. The vertex at which the.
Theory of Computing Lecture 7 MAS 714 Hartmut Klauck.
Topological Sorting and Least-cost Path Algorithms.
David Luebke 1 9/10/2015 CS 332: Algorithms Single-Source Shortest Path.
Shortest Path Algorithms. Kruskal’s Algorithm We construct a set of edges A satisfying the following invariant:  A is a subset of some MST We start with.
David Luebke 1 9/10/2015 ITCS 6114 Single-Source Shortest Path.
David Luebke 1 9/13/2015 CS 332: Algorithms S-S Shortest Path: Dijkstra’s Algorithm Disjoint-Set Union Amortized Analysis.
Jim Anderson Comp 122, Fall 2003 Single-source SPs - 1 Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph.
David Luebke 1 9/15/2015 CS 332: Algorithms Topological Sort Minimum Spanning Trees.
Chapter 24: Single-Source Shortest Paths Given: A single source vertex in a weighted, directed graph. Want to compute a shortest path for each possible.
Introduction to Algorithms Jiafen Liu Sept
1 Introduction to Algorithms L ECTURE 17 (Chap. 24) Shortest paths I 24.2 Single-source shortest paths 24.3 Dijkstra’s algorithm Edsger Wybe Dijkstra
Lecture 13 Algorithm Analysis
1 2/23/2016 ITCS 6114 Topological Sort Minimum Spanning Trees.
David Luebke 1 3/1/2016 CS 332: Algorithms Dijkstra’s Algorithm Disjoint-Set Union.
Single Source Shortest Paths Chapter 24 CSc 4520/6520 Fall 2013 Slides adapted from George Bebis, University of Reno, Nevada.
Shortest paths Given: A single source vertex (given s) in a weighted, directed graph. Want to compute a shortest path for each possible destination. (Single.
Single-Source Shortest Paths (25/24) HW: 25-2 and 25-3 p. 546/24-2 and 24-3 p.615 Given a graph G=(V,E) and w: E   weight of is w(p) =  w(v[i],v[i+1])
David Luebke 1 11/21/2016 CS 332: Algorithms Minimum Spanning Tree Shortest Paths.
Algorithms and Data Structures Lecture XIII
Minimum Spanning Tree Shortest Paths
CSC 413/513: Intro to Algorithms
CS200: Algorithm Analysis
Minimum Spanning Trees
Many slides here are based on D. Luebke slides
CS 332: Algorithms Dijkstra’s Algorithm Continued Disjoint-Set Union
Graphs Chapter 15 explain graph-based algorithms Graph definitions
CS6045: Advanced Algorithms
SINGLE-SOURCE SHORTEST PATHS
CSCE 411 Design and Analysis of Algorithms
Algorithms (2IL15) – Lecture 5 SINGLE-SOURCE SHORTEST PATHS
Page 620 Single-Source Shortest Paths
Data Structures and Algorithms (AT70. 02) Comp. Sc. and Inf. Mgmt
Lecture 11 Topics Application of BFS Shortest Path
Algorithms and Data Structures Lecture XIII
Lecture 13 Algorithm Analysis
Lecture 13 Algorithm Analysis
CSC 413/513: Intro to Algorithms
Lecture 13 Algorithm Analysis
Lecture 13 Algorithm Analysis
Shortest Path Problems
Chapter 24: Single-Source Shortest Paths
Chapter 24: Single-Source Shortest Paths
Chapter 24: Single-Source Shortest-Path
Single-Source Shortest Path & Minimum Spanning Trees
Topological Sorting Minimum Spanning Trees Shortest Path
Advanced Algorithms Analysis and Design
Presentation transcript:

CS 3013: DS & Algorithms Shortest Paths

Single-Source Shortest Path Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v “Shortest-path” = minimum weight Weight of path is sum of edges E.g., a road map: what is the shortest path from Chapel Hill to Charlottesville?

Shortest Path Properties Again, we have optimal substructure: the shortest path consists of shortest subpaths: Proof: suppose some subpath is not a shortest path There must then exist a shorter subpath Could substitute the shorter subpath for a shorter path But then overall path is not shortest path. Contradiction

Shortest Path Properties Define (u,v) to be the weight of the shortest path from u to v Shortest paths satisfy the triangle inequality: (u,v)  (u,x) + (x,v) “Proof”: x u v This path is no longer than any other path

Shortest Path Properties In graphs with negative weight cycles, some shortest paths will not exist (Why?): < 0

Relaxation A key technique in shortest path algorithms is relaxation Idea: for all v, maintain upper bound d[v] on (s,v) Relax(u,v,w) { if (d[v] > d[u]+w) then d[v]=d[u]+w; } 9 5 2 7 Relax 6 5 2 Relax

Bellman-Ford Algorithm for each v  V d[v] = ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w Initialize d[], which will converge to shortest-path value  Relaxation: Make |V|-1 passes, relaxing each edge Test for solution Under what condition do we get a solution?

Bellman-Ford Algorithm for each v  V d[v] = ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w What will be the running time?

Bellman-Ford Algorithm for each v  V d[v] = ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w What will be the running time? A: O(VE)

Bellman-Ford Algorithm for each v  V d[v] = ; d[s] = 0; for i=1 to |V|-1 for each edge (u,v)  E Relax(u,v, w(u,v)); if (d[v] > d[u] + w(u,v)) return “no solution”; Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w B s -1 2 A E 2 3 1 -3 4 C D 5 Ex: work on board

Bellman-Ford Note that order in which edges are processed affects how quickly it converges Correctness: show d[v] = (s,v) after |V|-1 passes Lemma: d[v]  (s,v) always Initially true Let v be first vertex for which d[v] < (s,v) Let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u,v) Then d[v] < (s,v) (s,v)  (s,u) + w(u,v) (Why?) (s,u) + w(u,v)  d[u] + w(u,v) (Why?) So d[v] < d[u] + w(u,v). Contradiction.

Bellman-Ford Prove: after |V|-1 passes, all d values correct Consider shortest path from s to v: s  v1  v2  v3  v4  v Initially, d[s] = 0 is correct, and doesn’t change (Why?) After 1 pass through edges, d[v1] is correct (Why?) and doesn’t change After 2 passes, d[v2] is correct and doesn’t change … Terminates in |V| - 1 passes: (Why?) What if it doesn’t?

DAG Shortest Paths Problem: finding shortest paths in DAG Bellman-Ford takes O(VE) time. How can we do better? Idea: use topological sort If were lucky and processes vertices on each shortest path from left to right, would be done in one pass Every path in a dag is subsequence of topologically sorted vertex order, so processing verts in that order, we will do each path in forward order (will never relax edges out of vert before doing all edges into vert). Thus: just one pass. What will be the running time?

Dijkstra’s Algorithm If no negative edge weights, we can beat BF Similar to breadth-first search Grow a tree gradually, advancing from vertices taken from a queue Also similar to Prim’s algorithm for MST Use a priority queue keyed on d[v]

Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] = ; d[s] = 0; S = ; Q = V; while (Q  ) u = ExtractMin(Q); S = S  {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); B C D A 10 4 3 2 1 5 Ex: run the algorithm Relaxation Step Note: this is really a call to Q->DecreaseKey()

Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] = ; d[s] = 0; S = ; Q = V; while (Q  ) u = ExtractMin(Q); S = S  {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); How many times is ExtractMin() called? How many times is DecraseKey() called? What will be the total running time?

Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] = ; d[s] = 0; S = ; Q = V; while (Q  ) u = ExtractMin(Q); S = S  {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); How many times is ExtractMin() called? How many times is DecraseKey() called? A: O(E lg V) using binary heap for Q Can acheive O(V lg V + E) with Fibonacci heaps

Dijkstra’s Algorithm Dijkstra(G) for each v  V d[v] = ; d[s] = 0; S = ; Q = V; while (Q  ) u = ExtractMin(Q); S = S  {u}; for each v  u->Adj[] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); Correctness: we must show that when u is removed from Q, it has already converged

Correctness Of Dijkstra's Algorithm p2 u s y x p2 Note that d[v]  (s,v) v Let u be first vertex picked s.t.  shorter path than d[u] d[u] > (s,u) Let y be first vertex V-S on actual shortest path from su  d[y] = (s,y) Because d[x] is set correctly for y's predecessor x  S on the shortest path, and When we put x into S, we relaxed (x,y), giving d[y] the correct value

Correctness Of Dijkstra's Algorithm p2 u s y x p2 Note that d[v]  (s,v) v Let u be first vertex picked s.t.  shorter path than d[u] d[u] > (s,u) Let y be first vertex V-S on actual shortest path from su  d[y] = (s,y) d[u] > (s,u) = (s,y) + (y,u) (Why?) = d[y] + (y,u)  d[y] But if d[u] > d[y], wouldn't have chosen u. Contradiction.

SSSP using STL The main issue with Dijkstra’s algorithm is the Decrease_Key function. This does not exists in STL. So.. Lets use the method discussed in the Green Book on page 148 It uses a priority_queue of pairs where each pair is (d,u) the present known distance back to the source for vertex u.