exponential functions

Slides:



Advertisements
Similar presentations
RATIONAL FUNCTIONS A rational function is a function of the form:
Advertisements

Equations in Quadratic Form
SINE AND COSINE FUNCTIONS
Symmetric about the y axis
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Polynomial Functions.
SIMPLE AND COMPOUND INTEREST
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
Matrix Algebra.
Relations And Functions.
exponential functions
(r, ).
PARAMETRIC Q U A T I N S.
Absolute Value.
VECTORS.
Graphing Techniques: Transformations Transformations Transformations
Polynomial Functions.
PARAMETRIC Q U A T I N S.
INVERSE FUNCTIONS.
Operations on Functions
Relations And Functions.
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
Polynomial Functions.
Relations And Functions.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
Relations and functions
Relations And Functions.
Operations on Functions
Relations And Functions.
Symmetric about the y axis
The Complex Plane; DeMoivre's Theorem
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

exponential functions Chapter 3.1 p. 216 exponential functions

Let’s examine exponential functions Let’s examine exponential functions. They are different than any of the other types of functions we’ve studied because the independent variable is in the exponent. Let’s look at the graph of this function by plotting some points. x 2x 2 -7 -6 -5 -4 -3 -2 -1 1 5 7 3 4 6 8 3 8 2 4 BASE 1 2 0 1 Recall what a negative exponent means: -1 1/2 -2 1/4 -3 1/8

Compare the graphs 2x, 3x , and 4x Characteristics about the Graph of an Exponential Function where a > 1 1. Domain is all real numbers 2. Range is positive real numbers 3. There are no x intercepts because there is no x value that you can put in the function to make it = 0 Can you see the horizontal asymptote for these functions? What is the x intercept of these exponential functions? What is the range of an exponential function? What is the domain of an exponential function? What is the y intercept of these exponential functions? Are these exponential functions increasing or decreasing? 4. The y-intercept is always (0,1) because a 0 = 1 5. The graph is always increasing 6. The x-axis (where y = 0) is a horizontal asymptote for x  - 

What would the graph of look like? up 3 right 2 down 1 Reflected over x axis up 1

Reflected about y-axis This equation could be rewritten in a different form: So if the base of our exponential function is between 0 and 1 (which will be a fraction), the graph will be decreasing. It will have the same domain, range, intercepts, and asymptote.

The Base “e” (also called the natural base) Sometimes called “Euler’s number” e is irrational like π. Found often in nature but most commonly used in computers and compounding interest. e≈2.71828 Find:

Negative x: reflect over y-axis Negative y: reflect over x-axis

If au = av, then u = v You could solve this for x now.

Let’s try one more: Check:

Acknowledgement I wish to thank MathXTC in addition to Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au