Reactivity-Guided Interface Design in Na Metal Solid-State Batteries

Slides:



Advertisements
Similar presentations
Volume 1, Issue 2, Pages (October 2017)
Advertisements

Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Volume 1, Issue 2, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 2, Issue 2, Pages (February 2018)
Volume 3, Issue 2, Pages (August 2017)
Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle  Naoto Yagi, Hiroyuki Iwamoto, Katsuaki Inoue 
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Natalie K. Garcia, Miklos Guttman, Jamie L. Ebner, Kelly K. Lee 
Volume 1, Issue 2, Pages (October 2017)
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Zhizhang Yuan, Yinqi Duan, Tao Liu, Huamin Zhang, Xianfeng Li
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Volume 1, Issue 1, Pages (September 2017)
Volume 1, Issue 4, Pages (December 2017)
Mismatch Receptive Fields in Mouse Visual Cortex
Andres Laan, Tamar Gutnick, Michael J. Kuba, Gilles Laurent 
Chen-Chou Wu, William J. Rice, David L. Stokes  Structure 
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Automated Delineation of Dermal–Epidermal Junction in Reflectance Confocal Microscopy Image Stacks of Human Skin  Sila Kurugol, Kivanc Kose, Brian Park,
Cryo-EM Study of the Pseudomonas Bacteriophage φKZ
Volume 2, Issue 1, Pages (January 2018)
Kiah Hardcastle, Surya Ganguli, Lisa M. Giocomo  Neuron 
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
A Switching Observer for Human Perceptual Estimation
Volume 1, Issue 4, Pages (December 2017)
Thermal Photonics and Energy Applications
Volume 98, Issue 11, Pages (June 2010)
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Volume 75, Issue 1, Pages (July 2012)
Volume 1, Issue 2, Pages (October 2017)
High-Energy Li Metal Battery with Lithiated Host
Alkaline Quinone Flow Battery with Long Lifetime at pH 12
Volume 24, Issue 12, Pages (December 2016)
Volume 28, Issue 6, Pages e5 (March 2018)
A Switching Observer for Human Perceptual Estimation
Volume 22, Issue 8, Pages (April 2012)
Georg B. Keller, Tobias Bonhoeffer, Mark Hübener  Neuron 
Volume 2, Issue 3, Pages (March 2018)
Volume 2, Issue 1, Pages (January 2018)
Interphase Engineering Enabled All-Ceramic Lithium Battery
Volume 107, Issue 7, Pages (October 2014)
Volume 77, Issue 6, Pages (March 2013)
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 1, Issue 2, Pages (October 2017)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 99, Issue 12, Pages (December 2010)
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Volume 20, Issue 8, Pages (August 2012)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Mechanism of Anionic Conduction across ClC
Volume 11, Pages (January 2019)
Volume 84, Issue 3, Pages (March 2003)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Mercè Izquierdo-Serra, Jan J. Hirtz, Ben Shababo, Rafael Yuste 
Xingwen Yu, Arumugam Manthiram
Coupled Oscillator Dynamics of Vocal Turn-Taking in Monkeys
Ryota Adachi, Rei Yamada, Hiroshi Kuba
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 5, Issue 1, Pages (October 2013)
Heterogeneous MAC Initiator and Pore Structures in a Lipid Bilayer by Phase-Plate Cryo-electron Tomography  Thomas H. Sharp, Abraham J. Koster, Piet Gros 
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Computational Screening of Cathode Coatings for Solid-State Batteries
Volume 20, Issue 8, Pages (August 2012)
Presentation transcript:

Reactivity-Guided Interface Design in Na Metal Solid-State Batteries Yaosen Tian, Yingzhi Sun, Daniel C. Hannah, Yihan Xiao, Hao Liu, Karena W. Chapman, Shou-Hang Bo, Gerbrand Ceder  Joule  Volume 3, Issue 4, Pages 1037-1050 (April 2019) DOI: 10.1016/j.joule.2018.12.019 Copyright © 2019 The Authors Terms and Conditions

Joule 2019 3, 1037-1050DOI: (10.1016/j.joule.2018.12.019) Copyright © 2019 The Authors Terms and Conditions

Figure 1 Enhancement of Na/Na3SbS4 Interfacial Stability via Surface Hydration of Solid-State Electrolyte (A) Galvanostatic cycling of Na/Na3SbS4/Na symmetric cells with (orange) and without (gray) surface hydration pretreatment at a current density of 0.1 mA cm−2. (B) SXRD pattern and Rietveld refinement of Na3SbS4/Na interface products. The blue dots represent the observed intensities, and the red and dark gray curves represent the calculated intensities and the intensity difference between the observation and refinement fitting, respectively. The tick marks indicate the peak positions for Na3SbS4 (green) and Na2S (orange). (C–E) SEM images (and corresponding scale bars) of the surface of Na3SbS4 pellet after air exposure for different durations. (C) 0 min, bare. (D) 2 min, and (E) 5 min. (F) Schematic illustration of solid electrolyte-Na metal interface before (left) and after (right) electrochemical cycling. A mixed conductive interface layer grew upon cycling of the non-hydrated Na3SbS4 (top), whereas a passivating interface was formed on the hydrated compound of the surface-hydrated Na3SbS4 (bottom). Joule 2019 3, 1037-1050DOI: (10.1016/j.joule.2018.12.019) Copyright © 2019 The Authors Terms and Conditions

Figure 2 Hydration Process of Na3SbS4 and Discovery of Na3SbS4·8H2O (A) Voltage of Na/Na3SbS4/Na symmetric cells after different surface hydration pretreatment durations before (gray) and after (red) 25 cycles (0 min of surface pretreatment indicates the use of bare Na3SbS4 as the solid electrolyte). The grid-pattern-filled area represents the voltage increase of each symmetric cell upon cycling. (B) SXRD patterns of Na3SbS4 after different durations of air exposure, with the tick marks indicating the peak positions for Na3SbS4 (blue) and Na3SbS4·9H2O (green). The visible peaks corresponding to Na3SbS4·8H2O are marked by dots. (C) Crystal structure viewed along the [001] direction of Na3SbS4·8H2O. (D) SXRD pattern and Rietveld refinement of Na3SbS4 after 10 min of air exposure. The blue dots represent the observed intensities, and the red and dark gray curves represent the calculated intensities and intensity difference between the observation and refinement fitting, respectively. The tick marks indicate the peak positions for Na3SbS4 (green) and Na3SbS4·8H2O (orange). Joule 2019 3, 1037-1050DOI: (10.1016/j.joule.2018.12.019) Copyright © 2019 The Authors Terms and Conditions

Figure 3 Na Vacancy Migration Energies and Transport Mechanism in Na3SbS4·8H2O and Na3SbS4·9H2O (A) Na vacancy migration energy along the minimum energy paths (MEPs). (B and C) Na vacancy migration pathway with minimal percolation barrier in Na3SbS4·8H2O along the [100] direction (B) and in Na3SbS4·9H2O along the [010] direction (C). Na(H2O,S)6 octahedra and SbS4 tetrahedra are colored in yellow and brown, respectively. The Na transport channel is represented by the hopping Na atoms (labeled consistently with Note S1) and the red or blue arrows. Joule 2019 3, 1037-1050DOI: (10.1016/j.joule.2018.12.019) Copyright © 2019 The Authors Terms and Conditions

Figure 4 Spatially Resolved Post-Operando SXRD Profiles of Na/Na3SbS4/Na Symmetric Cell with Surface Hydrate Coating (A) SXRD depth profiling of symmetric cell along the vertical axis of the cell. Each pattern corresponds to one layer of the schematic illustration on the right marked by multiple colors. The three bolded patterns mark the three region boundaries in the symmetric cell. (B and C) Enlargement of XRD profiles from 3.0° to 3.5° (B) and 3.8° to 4.5° (C). Visible peaks for NaH, Na2O, and Na3SbS4 are marked by arrows. Joule 2019 3, 1037-1050DOI: (10.1016/j.joule.2018.12.019) Copyright © 2019 The Authors Terms and Conditions