Lecture 2: Edge detection

Slides:



Advertisements
Similar presentations
Boundary Detection - Edges Boundaries of objects –Usually different materials/orientations, intensity changes.
Advertisements

Lecture 2: Convolution and edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
EDGE DETECTION ARCHANA IYER AADHAR AUTHENTICATION.
Instructor: Mircea Nicolescu Lecture 6 CS 485 / 685 Computer Vision.
Edge Detection CSE P 576 Larry Zitnick
EE663 Image Processing Edge Detection 1
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Lecture 4 Edge Detection
Edge detection. Edge Detection in Images Finding the contour of objects in a scene.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
EE663 Image Processing Edge Detection 2 Dr. Samir H. Abdul-Jauwad Electrical Engineering Department King Fahd University of Petroleum & Minerals.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Lecture 2: Edge detection and resampling
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
Lecture 3: Edge detection, continued
Lecture 2: Image filtering
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
The blue and green colors are actually the same.
CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lecture 10 – Edges and Pyramids 1.
Edge Detection.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30 – 11:50am.
CS559: Computer Graphics Lecture 3: Digital Image Representation Li Zhang Spring 2008.
Lecture 2: Edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Introduction to Image Processing
CS 1699: Intro to Computer Vision Edges and Binary Images Prof. Adriana Kovashka University of Pittsburgh September 15, 2015.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection From Sandlot ScienceSandlot Science.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski, Ch 4.1.2, From Sandlot.
Instructor: S. Narasimhan
CS654: Digital Image Analysis Lecture 24: Introduction to Image Segmentation: Edge Detection Slide credits: Derek Hoiem, Lana Lazebnik, Steve Seitz, David.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
CSE 185 Introduction to Computer Vision Edges. Scale space Reading: Chapter 3 of S.
EE 4780 Edge Detection.
Many slides from Steve Seitz and Larry Zitnick
Edge Detection and Geometric Primitive Extraction Jinxiang Chai.
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Edge Detection.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
CSE 6367 Computer Vision Image Operations and Filtering “You cannot teach a man anything, you can only help him find it within himself.” ― Galileo GalileiGalileo.
Announcements Project 0 due tomorrow night. Edge Detection Today’s readings Cipolla and Gee (handout) –supplemental: Forsyth, chapter 9Forsyth For Friday.
Lecture 04 Edge Detection Lecture 04 Edge Detection Mata kuliah: T Computer Vision Tahun: 2010.
COMPUTER VISION D10K-7C02 CV05: Edge Detection Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran.
Lecture 8: Edges and Feature Detection
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Finding Boundaries Computer Vision CS 143, Brown James Hays 09/28/11 Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li,
Edges Edges = jumps in brightness/color Brightness jumps marked in white.
Winter in Kraków photographed by Marcin Ryczek
Edge Detection Images and slides from: James Hayes, Brown University, Computer Vision course Svetlana Lazebnik, University of North Carolina at Chapel.
Miguel Tavares Coimbra
Edge Detection slides taken and adapted from public websites:
MAN-522: Computer Vision Edge detection Feature and blob detection
Image gradients and edges
Edge Detection CS 678 Spring 2018.
Corners and Interest Points
Edge Detection EE/CSE 576 Linda Shapiro.
Lecture 2: Edge detection
Jeremy Bolton, PhD Assistant Teaching Professor
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Review: Linear Systems
Edge Detection Today’s reading
Edge Detection CSE 455 Linda Shapiro.
Edge Detection Today’s reading
Lecture 2: Edge detection
Edge Detection Today’s reading
Edge Detection Today’s readings Cipolla and Gee Watt,
Winter in Kraków photographed by Marcin Ryczek
IT472 Digital Image Processing
IT472 Digital Image Processing
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Edge Detection ECE P 596 Linda Shapiro.
Presentation transcript:

Lecture 2: Edge detection CS5670: Computer Vision Noah Snavely Lecture 2: Edge detection From Sandlot Science

Announcements Project 1 (Hybrid Images) is now on the course webpage (see “Projects” link) Due Wednesday, Feb 15, by 11:59pm Artifact due Friday, Feb 15, by 11:59pm To be done individually Voting system for favorite artifacts (with small amount of extra credit) Files due by CMS We will provide a course VM for you to run the assignments

Project 1: Hybrid Images

Project 1 Demo

Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA

Origin of Edges Edges are caused by a variety of factors surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors

Images as functions… Edges look like steep cliffs

Characterizing edges An edge is a place of rapid change in the image intensity function intensity function (along horizontal scanline) image first derivative edges correspond to extrema of derivative Source: L. Lazebnik

Image derivatives How can we differentiate a digital image F[x,y]? Option 1: reconstruct a continuous image, f, then compute the derivative Option 2: take discrete derivative (finite difference) How would you implement this as a linear filter? 1 -1 -1 1 : : Source: S. Seitz

Image gradient The gradient of an image: The gradient points in the direction of most rapid increase in intensity The edge strength is given by the gradient magnitude: The gradient direction is given by: how does this relate to the direction of the edge? give definition of partial derivative: lim h->0 [f(x+h,y) – f(x,y)]/h Source: Steve Seitz

Image gradient Source: L. Lazebnik

Effects of noise Where is the edge? Noisy input image Source: S. Seitz How to fix? Where is the edge? Source: S. Seitz

Solution: smooth first f * h To find edges, look for peaks in Source: S. Seitz

Associative property of convolution Differentiation is convolution, and convolution is associative: This saves us one operation: f Source: S. Seitz

The 1D Gaussian and its derivatives

2D edge detection filters derivative of Gaussian (x) Gaussian How many 2nd derivative filters are there? There are four 2nd partial derivative filters. In practice, it’s handy to define a single 2nd derivative filter—the Laplacian

Derivative of Gaussian filter x-direction y-direction

The Sobel operator Common approximation of derivative of Gaussian -1 1 -2 2 1 2 -1 -2 Q: Why might these work better? A: more stable when there is noise The standard defn. of the Sobel operator omits the 1/8 term doesn’t make a difference for edge detection the 1/8 term is needed to get the right gradient magnitude 18

Sobel operator: example Source: Wikipedia

Example original image (Lena)

Finding edges gradient magnitude

Finding edges where is the edge? thresholding

Get Orientation at Each Pixel Threshold at minimum level Get orientation theta = atan2(gy, gx)

Non-maximum supression Check if pixel is local maximum along gradient direction requires interpolating pixels p and r

Before Non-max Suppression

After Non-max Suppression

Finding edges thresholding

(non-maximum suppression) Finding edges thinning (non-maximum suppression)

Source: D. Lowe, L. Fei-Fei Canny edge detector MATLAB: edge(image,‘canny’) Filter image with derivative of Gaussian Find magnitude and orientation of gradient Non-maximum suppression Linking and thresholding (hysteresis): Define two thresholds: low and high Use the high threshold to start edge curves and the low threshold to continue them Source: D. Lowe, L. Fei-Fei

Canny edge detector Still one of the most widely used edge detectors in computer vision Depends on several parameters: J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. : width of the Gaussian blur high threshold low threshold

Canny edge detector original Canny with Canny with The choice of depends on desired behavior large detects “large-scale” edges small detects fine edges Source: S. Seitz

Scale space (Witkin 83) larger first derivative peaks larger Gaussian filtered signal Properties of scale space (w/ Gaussian smoothing) edge position may shift with increasing scale () two edges may merge with increasing scale an edge may not split into two with increasing scale

Questions?