Sequences 5/17/2019 12:43 AM Pattern Matching.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Pattern Matching1. © 2004 Goodrich, Tamassia Pattern Matching2 Strings A string is a sequence of characters Examples of strings:
Advertisements

Michael Alves, Patrick Dugan, Robert Daniels, Carlos Vicuna
Space-for-Time Tradeoffs
Data Compressor---Huffman Encoding and Decoding. Huffman Encoding Compression Typically, in files and messages, Each character requires 1 byte or 8 bits.
© 2004 Goodrich, Tamassia Tries1. © 2004 Goodrich, Tamassia Tries2 Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries.
Tries Standard Tries Compressed Tries Suffix Tries.
Tries Search for ‘bell’ O(n) by KMP algorithm O(dm) in a trie Tries
Advanced Algorithm Design and Analysis (Lecture 4) SW5 fall 2004 Simonas Šaltenis E1-215b
Comp. Eng. Lab III (Software), Pattern Matching1 Pattern Matching Dr. Andrew Davison WiG Lab (teachers room), CoE ,
1 Prof. Dr. Th. Ottmann Theory I Algorithm Design and Analysis (12 - Text search, part 1)
Pattern Matching1. 2 Outline and Reading Strings (§9.1.1) Pattern matching algorithms Brute-force algorithm (§9.1.2) Boyer-Moore algorithm (§9.1.3) Knuth-Morris-Pratt.
Data Structures Lecture 3 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Advanced Algorithms Piyush Kumar (Lecture 12: String Matching/Searching) Welcome to COT5405 Source: S. Šaltenis.
Goodrich, Tamassia String Processing1 Pattern Matching.
© 2004 Goodrich, Tamassia Greedy Method and Compression1 The Greedy Method and Text Compression.
Indexed Search Tree (Trie) Fawzi Emad Chau-Wen Tseng Department of Computer Science University of Maryland, College Park.
© 2004 Goodrich, Tamassia Greedy Method and Compression1 The Greedy Method and Text Compression.
CSC 213 Lecture 18: Tries. Announcements Quiz results are getting better Still not very good, however Average score on last quiz was 5.5 Every student.
© 2004 Goodrich, Tamassia Tries1 Chapter 7 Tries Topics Basics Standard tries Compressed ( 壓縮 ) tries Suffix ( 尾字 ) tries.
6/26/2015 7:13 PMTries1. 6/26/2015 7:13 PMTries2 Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3) Huffman encoding.
Pattern Matching 4/17/2017 7:14 AM Pattern Matching Pattern Matching.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Pattern Matching1. 2 Outline Strings Pattern matching algorithms Brute-force algorithm Boyer-Moore algorithm Knuth-Morris-Pratt algorithm.
String Matching. Problem is to find if a pattern P[1..m] occurs within text T[1..n] Simple solution: Naïve String Matching –Match each position in the.
Chapter 9: Text Processing Pattern Matching Data Compression.
Text Processing 1 Last Update: July 31, Topics Notations & Terminology Pattern Matching – Brute Force – Boyer-Moore Algorithm – Knuth-Morris-Pratt.
Data Compression1 File Compression Huffman Tries ABRACADABRA
© 2004 Goodrich, Tamassia Tries1. © 2004 Goodrich, Tamassia Tries2 Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries.
CSC401 – Analysis of Algorithms Chapter 9 Text Processing
20/10/2015Applied Algorithmics - week31 String Processing  Typical applications: pattern matching/recognition molecular biology, comparative genomics,
Strings and Pattern Matching Algorithms Pattern P[0..m-1] Text T[0..n-1] Brute Force Pattern Matching Algorithm BruteForceMatch(T,P): Input: Strings T.
Tries1. 2 Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3)
CSC 212 – Data Structures Lecture 36: Pattern Matching.
1/39 COMP170 Tutorial 13: Pattern Matching T: P:.
1 COMP9024: Data Structures and Algorithms Week Ten: Text Processing Hui Wu Session 1, 2016
Advanced Data Structures Lecture 8 Mingmin Xie. Agenda Overview Trie Suffix Tree Suffix Array, LCP Construction Applications.
1 String Matching Algorithms Mohd. Fahim Lecturer Department of Computer Engineering Faculty of Engineering and Technology Jamia Millia Islamia New Delhi,
CSG523/ Desain dan Analisis Algoritma
Tries 4/16/2018 8:59 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
MA/CSSE 473 Day 26 Student questions Boyer-Moore B Trees.
HUFFMAN CODES.
Tries 07/28/16 11:04 Text Compression
Tries 5/27/2018 3:08 AM Tries Tries.
Binary Search Tree A Binary Search Tree is a binary tree that is either an empty or in which every node contain a key and satisfies the following conditions.
Sequences 6/17/2018 2:44 PM Pattern Matching.
Greedy Method 6/22/2018 6:57 PM Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.
Mark Redekopp David Kempe
The Greedy Method and Text Compression
The Greedy Method and Text Compression
Tries 9/14/ :13 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Pattern Matching 9/14/2018 3:36 AM
13 Text Processing Hongfei Yan June 1, 2016.
String Processing.
Chapter 9: Huffman Codes
Chapter 7 Space and Time Tradeoffs
Huffman Coding CSE 373 Data Structures.
Pattern Matching 12/8/ :21 PM Pattern Matching Pattern Matching
Pattern Matching 1/14/2019 8:30 AM Pattern Matching Pattern Matching.
KMP String Matching Donald Knuth Jim H. Morris Vaughan Pratt 1997.
Space-for-time tradeoffs
Pattern Matching 2/15/2019 6:17 PM Pattern Matching Pattern Matching.
Tries 2/23/2019 8:29 AM Tries 2/23/2019 8:29 AM Tries.
Suffix Trees String … any sequence of characters.
Space-for-time tradeoffs
Tries 2/27/2019 5:37 PM Tries Tries.
Chap 3 String Matching 3 -.
String Processing.
Pattern Matching Pattern Matching 5/1/2019 3:53 PM Spring 2007
Space-for-time tradeoffs
Pattern Matching 4/27/2019 1:16 AM Pattern Matching Pattern Matching
Presentation transcript:

Sequences 5/17/2019 12:43 AM Pattern Matching

Outline and Reading Strings (§9.1.1) Pattern matching algorithms Sequences 5/17/2019 12:43 AM Outline and Reading Strings (§9.1.1) Pattern matching algorithms Brute-force algorithm (§9.1.2) Boyer-Moore algorithm (§9.1.3) Knuth-Morris-Pratt algorithm (§9.1.4)

Strings A string is a sequence of characters Examples of strings: Sequences 5/17/2019 12:43 AM Strings A string is a sequence of characters Examples of strings: Java program HTML document DNA sequence Digitized image An alphabet S is the set of possible characters for a family of strings Example of alphabets: ASCII Unicode {0, 1} {A, C, G, T}

Definitions for Strings Sequences 5/17/2019 12:43 AM Definitions for Strings Let P be a string of size m A substring P[i .. j] of P is the subsequence of P consisting of the characters with ranks between i and j A prefix of P is a substring of the type P[0 .. i] A suffix of P is a substring of the type P[i ..m - 1] Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P Applications: Text editors Search engines Biological research

Brute-Force Algorithm Sequences 5/17/2019 12:43 AM Brute-Force Algorithm The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either a match is found, or all placements of the pattern have been tried Brute-force pattern matching runs in time O(nm) Example of worst case: T = aaa … ah P = aaah May occur in images and DNA sequences Unlikely in English text Algorithm BruteForceMatch(T, P) Input text T of size n and pattern P of size m Output starting index of a substring of T equal to P or -1 if no such substring exists for i  0 to n - m { test shift i of the pattern } j  0 while j < m  T[i + j] = P[j] j  j + 1 if j = m return i {match at i} else break while loop {mismatch} return -1 {no match anywhere}

Boyer-Moore Algorithm Sequences 5/17/2019 12:43 AM Boyer-Moore Algorithm The brute force algorithm works on unbounded alphabets. The Boyer-Moore Algorithm requires a finite, fixed sized alphabet. It works best when the alphabet is moderately sized and the pattern is relatively long. The main idea is to use two heuristics that make the matching easier.

Boyer-Moore Heuristics Sequences 5/17/2019 12:43 AM Boyer-Moore Heuristics The Boyer-Moore’s pattern matching algorithm is based on two heuristics Looking-glass heuristic: Compare P with a subsequence of T moving backwards Character-jump heuristic: When a mismatch occurs at T[i] = c If P contains c, shift P to align the last occurrence of c in P with T[i] Else, shift P to align P[0] with T[i + 1] Example

Last-Occurrence Function Sequences 5/17/2019 12:43 AM Last-Occurrence Function Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet S to build the last-occurrence function L mapping S to integers, where L(c) is defined as the largest index i such that P[i] = c or -1 if no such index exists Example: S = {a, b, c, d} P = abacab The last-occurrence function can be represented by an array indexed by the numeric codes of the characters The last-occurrence function can be computed in time O(m + s), where m is the size of P and s is the size of S c a b d L(c) 4 5 3 -1

The Boyer-Moore Algorithm Sequences 5/17/2019 12:43 AM Algorithm BoyerMooreMatch(T, P, S) L  lastOccurenceFunction(P, S ) i  m - 1 j  m - 1 repeat if T[i] = P[j] if j = 0 return i { match at i } else i  i - 1 j  j - 1 { character-jump } l  L[T[i]] i  i + m – min(j, 1 + l) until i > n - 1 return -1 { no match } Case 1: j  1 + l Case 2: 1 + l  j

Sequences 5/17/2019 12:43 AM Example

Analysis Boyer-Moore’s algorithm runs in time O(nm + s) Sequences 5/17/2019 12:43 AM Boyer-Moore’s algorithm runs in time O(nm + s) Example of worst case: T = aaa … a P = baaa The worst case may occur in images and DNA sequences but is unlikely in English text Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text

Why Another Algorithm for the Same Problem Sequences 5/17/2019 12:43 AM Why Another Algorithm for the Same Problem The worst case in both the brute-force and BM pattern matching algorithms yield a major inefficiency. We may perform many comparisons, yet if the comparison doesn't yield a match, we throw away all the information gained by these comparisons and start all over again. The Knuth-Morris-Pratt (KMP) avoids the waste of information. It runs in O(n+m) time, which is optimal in the worst case.

The KMP Algorithm - Motivation Sequences 5/17/2019 12:43 AM The KMP Algorithm - Motivation Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm. When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons? Answer: the largest prefix of P[0..j] that is a suffix of P[1..j] . . a b a a b x . . . . . a b a a b a j a b a a b a No need to repeat these comparisons Resume comparing here

Sequences 5/17/2019 12:43 AM KMP Failure Function Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself The failure function F(j) is defined as the size of the largest prefix of P[0..j] that is also a suffix of P[1..j] Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at P[j]  T[i] we set j  F(j - 1) i.e. shift rest right j 1 2 3 4 5 P[j] a b F(j)

Sequences 5/17/2019 12:43 AM The KMP Algorithm The failure function can be represented by an array and can be computed in O(m) time At each iteration of the while-loop, either i increases by one, or the shift amount i - j increases by at least one (observe that F(j - 1) < j) Hence, there are no more than 2n iterations of the while-loop Thus, KMP’s algorithm runs in optimal time O(m + n) Algorithm KMPMatch(T, P) F  failureFunction(P) i  0 j  0 while i < n if T[i] = P[j] if j = m - 1 return i - j { match } else i  i + 1 j  j + 1 if j > 0 j  F[j - 1] return -1 { no match }

Computing the Failure Function Sequences 5/17/2019 12:43 AM Computing the Failure Function The failure function can be represented by an array and can be computed in O(m) time The construction is similar to the KMP algorithm itself At each iteration of the while-loop, either i increases by one, or the shift amount i - j increases by at least one (observe that F(j - 1) < j) Hence, there are no more than 2m iterations of the while-loop Algorithm failureFunction(P) F[0]  0 i  1 j  0 while i < m if P[i] = P[j] {we have matched j + 1 chars} F[i]  j + 1 i  i + 1 j  j + 1 else if j > 0 then {use failure function to shift P} j  F[j - 1] else F[i]  0 { no match }

Sequences 5/17/2019 12:43 AM Example j 1 2 3 4 5 P[j] a b c F(j)

Tries (pronounced "trys") Sequences 5/17/2019 12:43 AM Tries (pronounced "trys")

Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Sequences 5/17/2019 12:43 AM Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3) Huffman encoding tries (§9.3.1)

Preprocessing Strings Sequences 5/17/2019 12:43 AM Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries After preprocessing the pattern, KMP’s algorithm performs pattern matching in time proportional to the text size If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern A trie is a compact data structure for representing a set of strings, such as all the words in a text A tries supports pattern matching queries in time proportional to the pattern size

Sequences 5/17/2019 12:43 AM Standard Trie (1) The standard trie for a set of strings S is an ordered tree such that: Each node but the root is labeled with a character The children of a node are alphabetically ordered The paths from the external nodes to the root yield the strings of S Example: standard trie for the set of strings S = { bear, bell, bid, bull, buy, sell, stock, stop }

Sequences 5/17/2019 12:43 AM Standard Trie (2) A standard trie uses O(n) space and supports searches, insertions and deletions in time O(dm), where: n total size of the strings in S m size of the string parameter of the operation d size of the alphabet

Word Matching with a Trie Sequences 5/17/2019 12:43 AM Word Matching with a Trie We insert the words of the text into a trie Each leaf stores the occurrences of the associated word in the text

Sequences 5/17/2019 12:43 AM Compressed Trie A compressed trie has internal nodes of degree at least two It is obtained from standard trie by compressing chains of “redundant” nodes

Compact Representation Sequences 5/17/2019 12:43 AM Compact Representation Compact representation of a compressed trie for an array of strings: Stores at the nodes ranges of indices instead of substrings Uses O(s) space, where s is the number of strings in the array Serves as an auxiliary index structure i,j,k means ith string Index j to k

Sequences 5/17/2019 12:43 AM Suffix Trie (1) The suffix trie of a string X is the compressed trie of all the suffixes of X

Suffix Trie (2) Sequences 5/17/2019 12:43 AM Compact representation of the suffix trie for a string X of size n from an alphabet of size d Uses O(n) space Supports arbitrary pattern matching queries in X in O(dm) time, where m is the size of the pattern

Sequences 5/17/2019 12:43 AM Encoding Trie (1) A code is a mapping of each character of an alphabet to a binary code-word A prefix code is a binary code such that no code-word is the prefix of another code-word An encoding trie represents a prefix code Each leaf stores a character The code word of a character is given by the path from the root to the leaf storing the character (0 for a left child and 1 for a right child a b c d e 00 010 011 10 11 a b c d e

Sequences 5/17/2019 12:43 AM Encoding Trie (2) Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X Frequent characters should have long code-words Rare characters should have short code-words Example X = abracadabra T1 encodes X into 29 bits T2 encodes X into 24 bits c a r d b T1 a c d b r T2

Sequences 5/17/2019 12:43 AM Huffman’s Algorithm Given a string X, Huffman’s algorithm construct a prefix code the minimizes the size of the encoding of X It runs in time O(n + d log d), where n is the size of X and d is the number of distinct characters of X A heap-based priority queue is used as an auxiliary structure Algorithm HuffmanEncoding(X) Input string X of size n Output optimal encoding trie for X C  distinctCharacters(X) computeFrequencies(C, X) Q  new empty heap for all c  C T  new single-node tree storing c Q.insert(getFrequency(c), T) while Q.size() > 1 f1  Q.minKey() T1  Q.removeMin() f2  Q.minKey() T2  Q.removeMin() T  join(T1, T2) Q.insert(f1 + f2, T) return Q.removeMin()

Example X = abracadabra Frequencies c a b d r 2 4 6 11 a b c d r 5 2 1 Sequences 5/17/2019 12:43 AM Example c a b d r 2 4 6 11 X = abracadabra Frequencies a b c d r 5 2 1 c a b d r 2 5 4 6 c a r d b 5 2 1 c a r d b 2 5 c a b d r 2 5 4